Versatile architectures for cryptographic systems
This doctoral thesis approaches the problem of designing versatile architectures for cryptographic hardware. By the term versatile we define hardware architectures capable of supporting a variety of arithmetic operations and algorithms useful in cryptography, with no need to reconfigure the internal...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
2014
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10889/7623 |
id |
nemertes-10889-7623 |
---|---|
record_format |
dspace |
institution |
UPatras |
collection |
Nemertes |
language |
English |
topic |
Residue number system Computer arithmetic Cryptanalysis Cryptography Αριθμητικό σύστημα υπολοίπων Αριθμητική υπολογιστών Κρυπτανάλυση Κρυπτογραφία 005.82 |
spellingShingle |
Residue number system Computer arithmetic Cryptanalysis Cryptography Αριθμητικό σύστημα υπολοίπων Αριθμητική υπολογιστών Κρυπτανάλυση Κρυπτογραφία 005.82 Σχοινιανάκης, Δημήτριος Versatile architectures for cryptographic systems |
description |
This doctoral thesis approaches the problem of designing versatile architectures for cryptographic hardware. By the term versatile we define hardware architectures capable of supporting a variety of arithmetic operations and algorithms useful in cryptography, with no need to reconfigure the internal interconnections of the integrated circuit.
A versatile architecture could offer considerable benefits to the end-user. By embedding a variety of crucial operations in a common architecture, the user is able to switch seamlessly the underlying cryptographic protocols, which not only gives an added value in the design from flexibility but also from practicality point of view. The total cost of a cryptographic application can be also benefited; assuming a versatile integrated circuit which requires no additional circuitry for other vital operations (for example input–output converters) it is easy to deduce that the total cost of development and fabrication of these extra components is eliminated, thus reducing the total production cost.
We follow a systematic approach for developing and presenting the proposed versatile architectures. First, an in-depth analysis of the algorithms of interest is carried out, in order to identify new research areas and weaknesses of existing solutions. The proposed algorithms and architectures operate on Galois Fields GF of the form GF(p) for integers and GF(2^n) for polynomials. Alternative number representation systems such as Residue Number System (RNS) for integers and Polynomial Residue Number System (PRNS) for polynomials are employed. The mathematical validity of the proposed algorithms and the applicability of RNS and PRNS in the context of cryptographic algorithms is also presented. The derived algorithms are decomposed in a way that versatile structures can be formulated and the corresponding hardware is developed and evaluated. New cryptanalytic properties of the proposed algorithms against certain types of attacks are also highlighted.
Furthermore, we try to approach a fundamental problem in Very Large Scale Integration (VLSI) design, that is the problem of evaluating and comparing architectures using models independent from the underlying fabrication technology. We also provide generic methods to evaluate the optimal operation parameters of the proposed architectures and methods to optimize the proposed architectures in terms of speed, area, and area x speed product, based on the needs of the underlying application. The proposed methodologies can be expanded to include applications other than cryptography.
Finally, novel algorithms based on new mathematical and design problems for the crucial operation of modular multiplication are presented. The new algorithms preserve the versatile characteristics discussed previously and it is proved that, along with existing algorithms in the literature, they may forma large family of algorithms applicable in cryptography, unified under the common frame of the proposed versatile architectures. |
author2 |
Στουραΐτης, Αθανάσιος |
author_facet |
Στουραΐτης, Αθανάσιος Σχοινιανάκης, Δημήτριος |
format |
Thesis |
author |
Σχοινιανάκης, Δημήτριος |
author_sort |
Σχοινιανάκης, Δημήτριος |
title |
Versatile architectures for cryptographic systems |
title_short |
Versatile architectures for cryptographic systems |
title_full |
Versatile architectures for cryptographic systems |
title_fullStr |
Versatile architectures for cryptographic systems |
title_full_unstemmed |
Versatile architectures for cryptographic systems |
title_sort |
versatile architectures for cryptographic systems |
publishDate |
2014 |
url |
http://hdl.handle.net/10889/7623 |
work_keys_str_mv |
AT schoinianakēsdēmētrios versatilearchitecturesforcryptographicsystems AT schoinianakēsdēmētrios eueliktesarchitektonikessystēmatōnkryptographias |
_version_ |
1801184884680556544 |
spelling |
nemertes-10889-76232022-09-05T20:13:09Z Versatile architectures for cryptographic systems Ευέλικτες αρχιτεκτονικές συστημάτων κρυπτογραφίας Σχοινιανάκης, Δημήτριος Στουραΐτης, Αθανάσιος Κουφοπαύλου, Οδυσσέας Ζαρολιάγκης, Χρήστος Σερπάνος, Δημήτριος Παλιουράς, Βασίλειος Θεοδωρίδης, Γεώργιος Schinianakis, Dimitrios Residue number system Computer arithmetic Cryptanalysis Cryptography Αριθμητικό σύστημα υπολοίπων Αριθμητική υπολογιστών Κρυπτανάλυση Κρυπτογραφία 005.82 This doctoral thesis approaches the problem of designing versatile architectures for cryptographic hardware. By the term versatile we define hardware architectures capable of supporting a variety of arithmetic operations and algorithms useful in cryptography, with no need to reconfigure the internal interconnections of the integrated circuit. A versatile architecture could offer considerable benefits to the end-user. By embedding a variety of crucial operations in a common architecture, the user is able to switch seamlessly the underlying cryptographic protocols, which not only gives an added value in the design from flexibility but also from practicality point of view. The total cost of a cryptographic application can be also benefited; assuming a versatile integrated circuit which requires no additional circuitry for other vital operations (for example input–output converters) it is easy to deduce that the total cost of development and fabrication of these extra components is eliminated, thus reducing the total production cost. We follow a systematic approach for developing and presenting the proposed versatile architectures. First, an in-depth analysis of the algorithms of interest is carried out, in order to identify new research areas and weaknesses of existing solutions. The proposed algorithms and architectures operate on Galois Fields GF of the form GF(p) for integers and GF(2^n) for polynomials. Alternative number representation systems such as Residue Number System (RNS) for integers and Polynomial Residue Number System (PRNS) for polynomials are employed. The mathematical validity of the proposed algorithms and the applicability of RNS and PRNS in the context of cryptographic algorithms is also presented. The derived algorithms are decomposed in a way that versatile structures can be formulated and the corresponding hardware is developed and evaluated. New cryptanalytic properties of the proposed algorithms against certain types of attacks are also highlighted. Furthermore, we try to approach a fundamental problem in Very Large Scale Integration (VLSI) design, that is the problem of evaluating and comparing architectures using models independent from the underlying fabrication technology. We also provide generic methods to evaluate the optimal operation parameters of the proposed architectures and methods to optimize the proposed architectures in terms of speed, area, and area x speed product, based on the needs of the underlying application. The proposed methodologies can be expanded to include applications other than cryptography. Finally, novel algorithms based on new mathematical and design problems for the crucial operation of modular multiplication are presented. The new algorithms preserve the versatile characteristics discussed previously and it is proved that, along with existing algorithms in the literature, they may forma large family of algorithms applicable in cryptography, unified under the common frame of the proposed versatile architectures. Η παρούσα διατριβή άπτεται του θέματος της ανάπτυξης ευέλικτων αρχιτεκτονικών κρυπτογραφίας σε ολοκληρωμένα κυκλώματα υψηλής ολοκλήρωσης (VLSI). Με τον όρο ευέλικτες ορίζονται οι αρχιτεκτονικές που δύνανται να υλοποιούν πλήθος βασικών αριθμητικών πράξεων για την εκτέλεση κρυπτογραφικών αλγορίθμων, χωρίς την ανάγκη επαναπροσδιορισμού των εσωτερικών διατάξεων στο ολοκληρωμένο κύκλωμα. Η χρήση ευέλικτων αρχιτεκτονικών παρέχει πολλαπλά οφέλη στο χρήστη. Η ενσωμάτωση κρίσιμων πράξεων απαραίτητων στη κρυπτογραφία σε μια κοινή αρχιτεκτονική δίνει τη δυνατότητα στο χρήστη να εναλλάσσει το υποστηριζόμενο κρυπτογραφικό πρωτόκολλο, εισάγοντας έτσι χαρακτηριστικά ευελιξίας και πρακτικότητας, χωρίς επιπρόσθετη επιβάρυνση του συστήματος σε υλικό. Αξίζει να σημειωθεί πως οι εναλλαγές αυτές δεν απαιτούν τη παρέμβαση του χρήστη. Σημαντική είναι η συνεισφορά μιας ευέλικτης αρχιτεκτονικής και στο κόστος μιας εφαρμογής. Αναλογιζόμενοι ένα ολοκληρωμένο κύκλωμα που μπορεί να υλοποιεί αυτόνομα όλες τις απαραίτητες πράξεις ενός αλγόριθμου χωρίς την εξάρτηση από εξωτερικά υποσυστήματα (π.χ. μετατροπείς εισόδου–εξόδου), είναι εύκολο να αντιληφθούμε πως το τελικό κόστος της εκάστοτε εφαρμογής μειώνεται σημαντικά καθώς μειώνονται οι ανάγκες υλοποίησης και διασύνδεσης επιπρόσθετων υποσυστημάτων στο ολοκληρωμένο κύκλωμα. Η ανάπτυξη των προτεινόμενων αρχιτεκτονικών ακολουθεί μια δομημένη προσέγγιση. Διενεργείται εκτενής μελέτη για τον προσδιορισμό γόνιμων ερευνητικών περιοχών και εντοπίζονται προβλήματα και δυνατότητες βελτιστοποίησης υπαρχουσών κρυπτογραφικών λύσεων. Οι νέοι αλγόριθμοι που αναπτύσσονται αφορούν τα Galois πεδία GF(p) και GF(2^n) και χρησιμοποιούν εναλλακτικές αριθμητικές αναπαράστασης δεδομένων όπως το αριθμητικό σύστημα υπολοίπων (Residue Number System (RNS)) για ακέραιους αριθμούς και το πολυωνυμικό αριθμητικό σύστημα υπολοίπων (Polynomial Residue Number System (PRNS)) για πολυώνυμα. Αποδεικνύεται η μαθηματική τους ορθότητα και βελτιστοποιούνται κατά τέτοιο τρόπο ώστε να σχηματίζουν ευέλικτες δομές. Αναπτύσσεται το κατάλληλο υλικό (hardware) και διενεργείται μελέτη χρήσιμων ιδιοτήτων των νέων αλγορίθμων, όπως για παράδειγμα νέες κρυπταναλυτικές ιδιότητες. Επιπρόσθετα, προσεγγίζουμε στα πλαίσια της διατριβής ένα βασικό πρόβλημα της επιστήμης σχεδιασμού ολοκληρωμένων συστημάτων μεγάλης κλίμακας (Very Large Scale Integration (VLSI)). Συγκεκριμένα, προτείνονται μέθοδοι σύγκρισης αρχιτεκτονικών ανεξαρτήτως τεχνολογίας καθώς και τρόποι εύρεσης των βέλτιστων συνθηκών λειτουργίας των προτεινόμενων αρχιτεκτονικών. Οι μέθοδοι αυτές επιτρέπουν στον σχεδιαστή να παραμετροποιήσει τις προτεινόμενες αρχιτεκτονικές με βάση τη ταχύτητα, επιφάνεια, ή το γινόμενο ταχύτητα x επιφάνεια. Οι προτεινόμενες μεθοδολογίες μπορούν εύκολα να επεκταθούν και σε άλλες εφαρμογές πέραν της κρυπτογραφίας. Τέλος, προτείνονται νέοι αλγόριθμοι για τη σημαντικότατη για την κρυπτογραφία πράξη του πολλαπλασιασμού με υπόλοιπα. Οι νέοι αλγόριθμοι ενσωματώνουν από τη μία τις ιδέες των ευέλικτων δομών, από την άλλη όμως βασίζονται σε νέες ιδέες και μαθηματικά προβλήματα τα οποία προσπαθούμε να προσεγγίσουμε και να επιλύσουμε. Αποδεικνύεται πως είναι δυνατή η ενοποίηση μιας μεγάλης οικογένειας αλγορίθμων για χρήση στην κρυπτογραφία, υπό τη στέγη των προτεινόμενων μεθοδολογιών για ευέλικτο σχεδιασμό. 2014-05-27T08:03:21Z 2014-05-27T08:03:21Z 2013-10-11 2014-05-27 Thesis http://hdl.handle.net/10889/7623 en Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. 0 application/pdf |