Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων
Δύσκολα προβλήματα ταξινόμησης από τον χώρο της Βιοπληροφορικής όπως η πρόβλεψη των microRNA γονιδιών και η πρόβλεψη των πρωτεϊνικών αλληλεπιδράσεων (Protein- Protein Interactions) απαιτούν ισχυρούς ταξινομητές οι οποίοι θα πρέπει να έχουν καλή ακρίβεια ταξινόμησης, να χειρίζονται ελλιπείς τιμές, ν...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Thesis |
Γλώσσα: | Greek |
Έκδοση: |
2014
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10889/8037 |
id |
nemertes-10889-8037 |
---|---|
record_format |
dspace |
spelling |
nemertes-10889-80372022-09-05T20:12:37Z Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων Σκρεπετός, Δημήτριος Τσακαλίδης, Αθανάσιος Χούσος, Ευθύμιος Τσακαλίδης, Αθανάσιος Skrepetos, Dimitrios Εξελικτικοί αλγόριθμοι Νευρωνικά δίκτυα Ταξινόμηση Ελλιπείς τιμές Πρόβλημα ανισορροπίας κλάσεων Evolutionary algorithms Neural networks Classification microRNA Protein-protein Interactioni Missing values Class imbalance problem 570.285 Δύσκολα προβλήματα ταξινόμησης από τον χώρο της Βιοπληροφορικής όπως η πρόβλεψη των microRNA γονιδιών και η πρόβλεψη των πρωτεϊνικών αλληλεπιδράσεων (Protein- Protein Interactions) απαιτούν ισχυρούς ταξινομητές οι οποίοι θα πρέπει να έχουν καλή ακρίβεια ταξινόμησης, να χειρίζονται ελλιπείς τιμές, να είναι ερμηνεύσιμοι, και να μην πάσχουν από το πρόβλημα ανισορροπίας κλάσεων. Ένας ευρέως χρησιμοποιούμενος ταξινομητής είναι τα νευρωνικά δίκτυα, τα οποία ωστόσο χρειάζονται προσδιορισμό της αρχιτεκτονικής τους και των λοιπών παραμέτρων τους, ενώ και οι αλγόριθμοι εκμάθησής τους συνήθως συγκλίνουν σε τοπικά ελάχιστα. Για τους λόγους αυτούς, προτείνεται μία πολυκριτηριακή εξελικτική μέθοδος η οποία βασίζεται στους εξελικτικούς αλγορίθμους ώστε να βελτιστοποιήσει πολλά από τα προαναφερθέντα κριτήρια απόδοσης των νευρωνικών δικτύων, να βρει επίσης την βέλτιση αρχιτεκτονική καθώς και ένα ολικό ελάχιστο για τα συναπτικά τους βάρη. Στην συνέχεια, από τον πληθυσμό που προκύπτει χρησιμοποιούμε το σύνολό του ώστε να επιτύχουμε την ταξινόμηση. Hard classification problems of the area of Bioinformatics, like microRNA prediction and PPI prediction, demand powerful classifiers which must have good prediction accuracy, handle missing values, be interpretable, and not suffer from the class imbalance problem. One wide used classifier is neural networks, which need definition of their architecture and their other parameters, while their training algorithms usually converge to local minima. For those reasons, we suggest a multi-objective evolutionary method, which is based to evolutionary algorithms in order to optimise many of the aforementioned criteria of the performance of a neural network, and also find the optimised architecture and a global minimum for its weights. Then, from the ensuing population, we use it as an ensemble classifier in order to perform the classification. 2014-10-09T07:48:43Z 2014-10-09T07:48:43Z 2014-07-02 2014-10-09 Thesis http://hdl.handle.net/10889/8037 gr 0 application/pdf |
institution |
UPatras |
collection |
Nemertes |
language |
Greek |
topic |
Εξελικτικοί αλγόριθμοι Νευρωνικά δίκτυα Ταξινόμηση Ελλιπείς τιμές Πρόβλημα ανισορροπίας κλάσεων Evolutionary algorithms Neural networks Classification microRNA Protein-protein Interactioni Missing values Class imbalance problem 570.285 |
spellingShingle |
Εξελικτικοί αλγόριθμοι Νευρωνικά δίκτυα Ταξινόμηση Ελλιπείς τιμές Πρόβλημα ανισορροπίας κλάσεων Evolutionary algorithms Neural networks Classification microRNA Protein-protein Interactioni Missing values Class imbalance problem 570.285 Σκρεπετός, Δημήτριος Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων |
description |
Δύσκολα προβλήματα ταξινόμησης από τον χώρο της
Βιοπληροφορικής όπως η πρόβλεψη των microRNA γονιδιών και η πρόβλεψη των πρωτεϊνικών αλληλεπιδράσεων (Protein- Protein Interactions) απαιτούν ισχυρούς ταξινομητές οι οποίοι θα πρέπει να έχουν καλή ακρίβεια ταξινόμησης, να χειρίζονται ελλιπείς τιμές, να είναι ερμηνεύσιμοι, και να μην πάσχουν από το πρόβλημα ανισορροπίας κλάσεων. Ένας ευρέως χρησιμοποιούμενος ταξινομητής είναι τα νευρωνικά δίκτυα, τα οποία ωστόσο χρειάζονται προσδιορισμό της αρχιτεκτονικής τους και των λοιπών παραμέτρων τους, ενώ και οι αλγόριθμοι εκμάθησής τους συνήθως συγκλίνουν σε τοπικά ελάχιστα. Για τους λόγους αυτούς, προτείνεται μία πολυκριτηριακή εξελικτική μέθοδος η οποία βασίζεται στους εξελικτικούς αλγορίθμους ώστε να βελτιστοποιήσει πολλά από τα προαναφερθέντα κριτήρια απόδοσης των νευρωνικών δικτύων, να βρει επίσης την βέλτιση αρχιτεκτονική καθώς και ένα ολικό ελάχιστο για τα συναπτικά τους βάρη. Στην συνέχεια, από τον πληθυσμό που προκύπτει χρησιμοποιούμε το σύνολό του ώστε να επιτύχουμε την ταξινόμηση. |
author2 |
Τσακαλίδης, Αθανάσιος |
author_facet |
Τσακαλίδης, Αθανάσιος Σκρεπετός, Δημήτριος |
format |
Thesis |
author |
Σκρεπετός, Δημήτριος |
author_sort |
Σκρεπετός, Δημήτριος |
title |
Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων |
title_short |
Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων |
title_full |
Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων |
title_fullStr |
Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων |
title_full_unstemmed |
Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων |
title_sort |
σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων |
publishDate |
2014 |
url |
http://hdl.handle.net/10889/8037 |
work_keys_str_mv |
AT skrepetosdēmētrios schediasmoskaiylopoiēsēpolykritēriakēsybridikēsmethodoutaxinomēsēsbiologikōndedomenōnmechrēsēexeliktikōnalgorithmōnkaineurōnikōndiktyōn |
_version_ |
1771297278419533824 |