Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων

Δύσκολα προβλήματα ταξινόμησης από τον χώρο της Βιοπληροφορικής όπως η πρόβλεψη των microRNA γονιδιών και η πρόβλεψη των πρωτεϊνικών αλληλεπιδράσεων (Protein- Protein Interactions) απαιτούν ισχυρούς ταξινομητές οι οποίοι θα πρέπει να έχουν καλή ακρίβεια ταξινόμησης, να χειρίζονται ελλιπείς τιμές, ν...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Σκρεπετός, Δημήτριος
Άλλοι συγγραφείς: Τσακαλίδης, Αθανάσιος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2014
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/8037
id nemertes-10889-8037
record_format dspace
spelling nemertes-10889-80372022-09-05T20:12:37Z Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων Σκρεπετός, Δημήτριος Τσακαλίδης, Αθανάσιος Χούσος, Ευθύμιος Τσακαλίδης, Αθανάσιος Skrepetos, Dimitrios Εξελικτικοί αλγόριθμοι Νευρωνικά δίκτυα Ταξινόμηση Ελλιπείς τιμές Πρόβλημα ανισορροπίας κλάσεων Evolutionary algorithms Neural networks Classification microRNA Protein-protein Interactioni Missing values Class imbalance problem 570.285 Δύσκολα προβλήματα ταξινόμησης από τον χώρο της Βιοπληροφορικής όπως η πρόβλεψη των microRNA γονιδιών και η πρόβλεψη των πρωτεϊνικών αλληλεπιδράσεων (Protein- Protein Interactions) απαιτούν ισχυρούς ταξινομητές οι οποίοι θα πρέπει να έχουν καλή ακρίβεια ταξινόμησης, να χειρίζονται ελλιπείς τιμές, να είναι ερμηνεύσιμοι, και να μην πάσχουν από το πρόβλημα ανισορροπίας κλάσεων. Ένας ευρέως χρησιμοποιούμενος ταξινομητής είναι τα νευρωνικά δίκτυα, τα οποία ωστόσο χρειάζονται προσδιορισμό της αρχιτεκτονικής τους και των λοιπών παραμέτρων τους, ενώ και οι αλγόριθμοι εκμάθησής τους συνήθως συγκλίνουν σε τοπικά ελάχιστα. Για τους λόγους αυτούς, προτείνεται μία πολυκριτηριακή εξελικτική μέθοδος η οποία βασίζεται στους εξελικτικούς αλγορίθμους ώστε να βελτιστοποιήσει πολλά από τα προαναφερθέντα κριτήρια απόδοσης των νευρωνικών δικτύων, να βρει επίσης την βέλτιση αρχιτεκτονική καθώς και ένα ολικό ελάχιστο για τα συναπτικά τους βάρη. Στην συνέχεια, από τον πληθυσμό που προκύπτει χρησιμοποιούμε το σύνολό του ώστε να επιτύχουμε την ταξινόμηση. Hard classification problems of the area of Bioinformatics, like microRNA prediction and PPI prediction, demand powerful classifiers which must have good prediction accuracy, handle missing values, be interpretable, and not suffer from the class imbalance problem. One wide used classifier is neural networks, which need definition of their architecture and their other parameters, while their training algorithms usually converge to local minima. For those reasons, we suggest a multi-objective evolutionary method, which is based to evolutionary algorithms in order to optimise many of the aforementioned criteria of the performance of a neural network, and also find the optimised architecture and a global minimum for its weights. Then, from the ensuing population, we use it as an ensemble classifier in order to perform the classification. 2014-10-09T07:48:43Z 2014-10-09T07:48:43Z 2014-07-02 2014-10-09 Thesis http://hdl.handle.net/10889/8037 gr 0 application/pdf
institution UPatras
collection Nemertes
language Greek
topic Εξελικτικοί αλγόριθμοι
Νευρωνικά δίκτυα
Ταξινόμηση
Ελλιπείς τιμές
Πρόβλημα ανισορροπίας κλάσεων
Evolutionary algorithms
Neural networks
Classification
microRNA
Protein-protein Interactioni
Missing values
Class imbalance problem
570.285
spellingShingle Εξελικτικοί αλγόριθμοι
Νευρωνικά δίκτυα
Ταξινόμηση
Ελλιπείς τιμές
Πρόβλημα ανισορροπίας κλάσεων
Evolutionary algorithms
Neural networks
Classification
microRNA
Protein-protein Interactioni
Missing values
Class imbalance problem
570.285
Σκρεπετός, Δημήτριος
Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων
description Δύσκολα προβλήματα ταξινόμησης από τον χώρο της Βιοπληροφορικής όπως η πρόβλεψη των microRNA γονιδιών και η πρόβλεψη των πρωτεϊνικών αλληλεπιδράσεων (Protein- Protein Interactions) απαιτούν ισχυρούς ταξινομητές οι οποίοι θα πρέπει να έχουν καλή ακρίβεια ταξινόμησης, να χειρίζονται ελλιπείς τιμές, να είναι ερμηνεύσιμοι, και να μην πάσχουν από το πρόβλημα ανισορροπίας κλάσεων. Ένας ευρέως χρησιμοποιούμενος ταξινομητής είναι τα νευρωνικά δίκτυα, τα οποία ωστόσο χρειάζονται προσδιορισμό της αρχιτεκτονικής τους και των λοιπών παραμέτρων τους, ενώ και οι αλγόριθμοι εκμάθησής τους συνήθως συγκλίνουν σε τοπικά ελάχιστα. Για τους λόγους αυτούς, προτείνεται μία πολυκριτηριακή εξελικτική μέθοδος η οποία βασίζεται στους εξελικτικούς αλγορίθμους ώστε να βελτιστοποιήσει πολλά από τα προαναφερθέντα κριτήρια απόδοσης των νευρωνικών δικτύων, να βρει επίσης την βέλτιση αρχιτεκτονική καθώς και ένα ολικό ελάχιστο για τα συναπτικά τους βάρη. Στην συνέχεια, από τον πληθυσμό που προκύπτει χρησιμοποιούμε το σύνολό του ώστε να επιτύχουμε την ταξινόμηση.
author2 Τσακαλίδης, Αθανάσιος
author_facet Τσακαλίδης, Αθανάσιος
Σκρεπετός, Δημήτριος
format Thesis
author Σκρεπετός, Δημήτριος
author_sort Σκρεπετός, Δημήτριος
title Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων
title_short Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων
title_full Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων
title_fullStr Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων
title_full_unstemmed Σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων
title_sort σχεδιασμός και υλοποίηση πολυκριτηριακής υβριδικής μεθόδου ταξινόμησης βιολογικών δεδομένων με χρήση εξελικτικών αλγορίθμων και νευρωνικών δικτύων
publishDate 2014
url http://hdl.handle.net/10889/8037
work_keys_str_mv AT skrepetosdēmētrios schediasmoskaiylopoiēsēpolykritēriakēsybridikēsmethodoutaxinomēsēsbiologikōndedomenōnmechrēsēexeliktikōnalgorithmōnkaineurōnikōndiktyōn
_version_ 1771297278419533824