Περίληψη: | Τα ομομεταλικά σύμπλοκα που περιέχουν αποκλειστικά 3d μεταλλοϊόντα, καθώς και τα ετερομεταλλικά σύμπλοκα 3d/4f μεταλλοϊόντων αποτελούν σήμερα πόλο έλξης για τους ανόργανους χημικούς, λόγω των σημαντικών μαγνητικών, οπτικών και καταλυτικών τους ιδιοτήτων.
Η χημεία των πολυπυρηνικών συμπλόκων (πλειάδων) των μετάλλων μετάπτωσης της 1ης Σειράς αποτελεί σήμερα ερευνητικό πεδίο αιχμής, καθώς προκύπτει από την αλληλοεπικάλυψη των επιστημών της Χημείας, της Βιολογίας και της Φυσικής, βρίσκοντας εφαρμογές σε τομείς όπως η Βιοανόργανη Χημεία, η Χημεία των Μοριακών Υλικών και η Νανοτεχνολογία. Ιδιαίτερο ενδιαφέρον παρουσιάζουν οι μαγνητικές ιδιότητες των μοριακών πλειάδων μετά την ανακάλυψη του φαινομένου του Μονομοριακού Μαγνητισμού. Μαγνήτες Μοναδικού Μορίου, ΜΜΜ (Single Molecule Magnets, SMMs) είναι μοριακές πλειάδες οι οποίες μπορούν να διατηρούν το μαγνητικό προσανατολισμό τους, απουσία ενός μαγνητικού πεδίου, κάτω από μια συγκεκριμένη θερμοκρασία. Οι ΜΜΜ αντιπροσωπεύουν τη μικρότερη συσκευή αποθήκευσης πληροφοριών με ποικιλία δυνητικών εφαρμογών.
Πολλοί ΜΜΜ των 3d μετάλλων έχουν υψηλό ολικό σπιν στη θεμελιώδη κατάσταση, αλλά υστερούν σημαντικά στο θέμα της μαγνητικής ανισοτροπίας, όπως αυτή αντικατοπτρίζεται στη μικρή τιμή της παραμέτρου σχάσης μηδενικού πεδίου D. Τα λανθανίδια διαδραματίζουν έναν ιδιαίτερο ρόλο στο Μαγνητισμό, εξαιτίας της μεγάλης μαγνητικής ροπής τους, και στις περισσότερες των περιπτώσεων, λόγω της τεράστιας μαγνητικής τους ανισοτροπίας. Στην τρισθενή τους όμως οξειδωτική κατάσταση, που είναι και η πιο σταθερή, παρουσιάζουν το μειονέκτημα της πολύ ασθενούς αλληλεπίδρασης ανταλλαγής μεταξύ των μεταλλοϊόντων, ως αποτέλεσμα της αποτελεσματικής προάσπισης των ασυζεύκτων ηλεκτρονίων των 4f τροχιακών. Το γεγονός αυτό οδήγησε στη διερεύνηση συστημάτων που συνδυάζουν 4f ιόντα με άλλα παραμαγνητικά είδη, όπως οργανικές ρίζες ή 3d ιόντα. Έτσι, η ταυτόχρονη ύπαρξη των τρισθενών λανθανιδίων (LnIII) και 3d μεταλλοϊόντων μπορεί να βελτιώσει το Μονομοριακό Μαγνητισμό των πλειάδων ένταξης οδηγώντας σε μαγνητικές ιδιότητες διαφορετικές από αυτές των 3d πλειάδων.
Η Διπλωματική Εργασία μας στα πλαίσια του Μεταπτυχιακού Διπλώματος Ειδίκευσης «Αναλυτική Χημεία και Νανοτεχνολογία» αφορά τη χημεία των πλειάδων των 3d/4f- μεταλλοϊόντων. Στις προσπάθειές μας να συνθέσουμε ετερομεταλλικές πλειάδες Co ή Cu/LnΙΙΙ με υποκαταστάτες οξίμες (2-πυρίδυλο οξίμες, 2,4-πεντανιοδιόνη διοξίμη) και τη δι-2-πυρίδυλο κετόνη και τα παράγωγά της, απομονώσαμε και χαρακτηρίσαμε οικογένειες συμπλόκων μεταβάλλοντας κάθε φορά παραμέτρους της αντίδρασης, όπως τη φύση του οργανικού υποκαταστάτη, τον διαλύτη της αντίδρασης, την πηγή των μεταλλοϊόντων, τη θερμοκρασία, την πίεση, κ.α. Ως συνθετική πορεία χρησιμοποιήσαμε την “bottom-up” προσέγγιση. Η στρατηγική “bottom-up” χρησιμοποιεί τις χημικές ιδιότητες των διακριτών μορίων για να προκαλέσει:
Α) Αυτο-οργάνωση ή αυτο-συναρμολόγηση σε μια χρήσιμη διαμόρφωση.
Β) Οργάνωση σε συγκεκριμένη θέση.
Η στρατηγική αυτή χρησιμοποιείται για τις έννοιες της μοριακής αυτο-οργάνωσης ή/και της μοριακής αναγνώρισης. Σε ευρύτερο επίπεδο, δηλαδή η “bottom-up” τεχνική δυνητικά μπορεί να παράγει παράλληλες συσκευές με πολύ φθηνότερους τρόπους σε σχέση με την “top-down” μέθοδο που χρησιμοποιείται ευρέως στη σύνθεση τεχνολογικού ενδιαφέροντος συσκευών. Η μοριακή αυτή προσέγγιση ξεκινά με χρήση πηγών ανεξάρτητων ατόμων ή μικρών μορίων για τη σύνθεση μεγάλων μοριακών νανοδομών με επιθυμητές και στοχευμένες ιδιότητες, με αποτέλεσμα να αναπτύσσεται το πεδίο της Ναντεχνολογίας.
Δύο γενικές προσεγγίσεις για τη σύνθεση συμπλόκων Co ή Cu/LnIII είναι: η στρατηγική που βασίζεται στη χρησιμοποίηση «μεταλλικών συμπλόκων ως υποκαταστατών» και η στρατηγική που βασίζεται στην «απλή ανάμιξη των συστατικών». Στην παρούσα Διπλωματική Εργασία εφαρμόζεται η δεύτερη κατά σειρά προσέγγιση για την παρασκευή των παρακάτω συμπλόκων ενώσεων:
[CoIII {(py)C(Η)NO}2{(py)C(Η)NOH}](ClO4)
[CoIII2DyIII{(py)C(Η)NO}6(H2O)(DMF)](ClO4)3.3.2H2O
[CoIII2GdIII{(py)C(Η)NO}6(H2O)(DMF)](ClO4)3.3.2H2O
[CoIII2DyIII{(py)C(Η)NO}6(H2O)(MeOH)](ClO4)3.3.2H2O
[CoIII2GdIII{(py)C(Η)NO}6(H2O)(MeOH)](ClO4)3.3.2H2O [CoIII2SmIII{(py)C(Η)NO}6(H2O)(MeOH)](ClO4)3.3.2H2O
[CoIII2TbIII{(py)C(Η)NO}6(H2O)(MeOH)](ClO4)3.3.2H2O
[CoIIIDyIII{(py)C(Ph)NO}3(NO3)3]
[CoIIIEuIII{(py)C(Ph)NO}3(NO3)3]
[CoIIISmIII{(py)C(Ph)NO}3(NO3)3].0.3MeOH
[CoIIITbIII{(py)C(Ph)NO}3(NO3)3].0.3MeOH
[CoIIIGdIII{(py)C(Ph)NO}3(NO3)3].0.3MeOH
[CoIII2Na{(py)C(Η)NO}6].(OMe)
[CoIII2DyIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN
[CoIII2GdIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN
[CoIII2TbIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN
[CoIII2PrIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN
[CoIII2YIII2{(py)C(Η)NO}4(piv)4(NO3)4].2MeCN
[Cu2(diba)4(κινοξαλίνη)]n
[Cu3Dy2{(py)2CO2}{(py)2CO(OMe)}3{(py)2CO(OEt)}(NO3)4(H2O)2](ClO4)(OH)
[Cu6{(py)2CO(OMe)}6(NO3)2](ClO4)4
[Cu3{(py)2C(OMe)(OH)}2{(py)2C(OMe)O}2(ClO4)2] (ClO4)2 .2MeOH
[Cu{(py)2C(OH){CH2COCH3)}2](NO3)2.2H2O
Οι δομές των συμπλόκων προσδιορίσθηκαν με Κρυσταλλογραφία Ακτίνων Χ Μονοκρυστάλλου. Σε επιλεγμένα σύμπλοκα από αυτά που συνθέσαμε μελετώνται οι μαγνητικές τους ιδιότητες. Τα σύμπλοκα χαρακτηρίστηκαν με φυσικές και φασματοσκοπικές τεχνικές. Τα δεδομένα μελετήθηκαν σε σχέση με τις γνωστές δομές των συμπλόκων και των τρόπων ένταξης των υποκαταστατών.
|