Ολοκληρώσιμες μη γραμματικές μερικές διαφορικές εξισώσεις και διαφορική γεωμετρία

Στόχος της παρούσας εργασίας είναι η σύνδεση της μοντέρνας θεωρίας σολιτονίων με την κλασική διαφορική γεωμετρία. Ειδικότερα, αρχίζουμε με ένα εισαγωγικό μέρος, όπου παραθέτουμε τις βασικές έννοιες που αφορούν: α) Τις λύσεις μη-γραμμικών μερικών διαφορικών εξισώσεων (ΜΔΕ) που ονομάζονται σολιτόνι...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Βλάχου, Αναστασία
Άλλοι συγγραφείς: Τσουμπελής, Δημήτρης
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2014
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/8074
id nemertes-10889-8074
record_format dspace
institution UPatras
collection Nemertes
language Greek
topic Σολιτόνια
Σολιτονικές λύσεις
Σολιτονικές επιφάνειες
Βασικές έννοιες διαφορικής γεωμετρίας
Εξίσωση Sine-Gordon
Εξίσωση NLS
Μετασχηματισμός Bäcklund
Solitons
Soliton solutions
Soliton surfaces
Basics of differential geometry
Sine-Gordon equation
Nonlinear Schrödinger equation
Bäcklund transform
530.124
spellingShingle Σολιτόνια
Σολιτονικές λύσεις
Σολιτονικές επιφάνειες
Βασικές έννοιες διαφορικής γεωμετρίας
Εξίσωση Sine-Gordon
Εξίσωση NLS
Μετασχηματισμός Bäcklund
Solitons
Soliton solutions
Soliton surfaces
Basics of differential geometry
Sine-Gordon equation
Nonlinear Schrödinger equation
Bäcklund transform
530.124
Βλάχου, Αναστασία
Ολοκληρώσιμες μη γραμματικές μερικές διαφορικές εξισώσεις και διαφορική γεωμετρία
description Στόχος της παρούσας εργασίας είναι η σύνδεση της μοντέρνας θεωρίας σολιτονίων με την κλασική διαφορική γεωμετρία. Ειδικότερα, αρχίζουμε με ένα εισαγωγικό μέρος, όπου παραθέτουμε τις βασικές έννοιες που αφορούν: α) Τις λύσεις μη-γραμμικών μερικών διαφορικών εξισώσεων (ΜΔΕ) που ονομάζονται σολιτόνια (solitons) και β) Την γεωμετρία των ομαλών καμπυλών και επιφανειών του Ευκλείδειου χώρου). Ακολουθεί, το δεύτερο και κύριο μέρος, στο οποίο μελετάμε την σχέση τριών χαρακτηριστικών μη-γραμμικών εξισώσεων εξέλιξης, της εξίσωσης sine-Gordon, της τροποποιημένης εξίσωσης Korteweg de Vries (mKdV) και της μη γραμμικής εξίσωσης Schrödinger (NLS), με την θεωρία καμπυλών και επιφανειών. Αναλυτικότερα, στο πρώτο μέρος και πιο συγκεκριμένα στο πρώτο κεφάλαιο παρουσιάζουμε μια ιστορική αναδρομή στην έννοια του σολιτονίου. Στην συνέχεια αναζητούμε κυματικές-σολιτονικές λύσεις για τις εξισώσεις KdV και NLS. Κλείνουμε παραθέτοντας τις προϋποθέσεις κάτω από τις οποίες μια μη γραμμική εξίσωση είναι ολοκληρώσιμη. Επιλέγουμε να αναλύσουμε δύο από αυτές τις προϋποθέσεις, χρησιμοποιώντας συγκεκριμένα παραδείγματα, ενώ, για τις άλλες δύο, περιοριζόμαστε σε μια συνοπτική περιγραφή . Στο δεύτερο κεφάλαιο του εισαγωγικού μέρους γίνεται μια εκτενής αναφορά σε θεμελιώδεις έννοιες της διαφορικής γεωμετρίας. Πιο συγκεκριμένα, οι έννοιες αυτές σχετίζονται με την θεωρία καμπυλών και επιφανειών και για ορισμένες από αυτές παρουσιάζουμε κάποια αντιπροσωπευτικά παραδείγματα. Ακολουθεί το κύριο μέρος και ειδικότερα το πρώτο κεφάλαιο, στο οποίο, μελετώντας υπερβολικές επιφάνειες, καταλήγουμε σε ένα κλασικό μη γραμμικό σύστημα εξισώσεων. Είναι αυτό που οφείλουμε στον Bianchi και το οποίο ενσωματώνει τις εξισώσεις Gauss-Mainardi-Codazzi. Στην συνέχεια, περιοριζόμαστε στις ψευδοσφαιρικές επιφάνειες και έτσι καταλήγουμε στην εξίσωση sine-Gordon. Ακολουθεί η ενότητα 1.2, στην οποία βρίσκουμε τον μετασχηματισμό auto-Bäcklund για την εξίσωση sine-Gordon και περιγράφουμε την γεωμετρική διαδικασία για την κατασκευή ψευδοσφαιρικών επιφανειών. Στην ενότητα 1.3, χρησιμοποιώντας τον παραπάνω μετασχηματισμό Bäcklund, καταλήγουμε στο Θεώρημα Αντιμεταθετικότητας του Bianchi. Συνεχίζουμε με την ενότητα 1.4, στην οποία παρουσιάζουμε ψευδοσφαιρικές επιφάνειες, οι οποίες αντιστοιχούν σε σολιτονικές λύσεις της εξίσωσης sine-Gordon. Πιο αναλυτικά, στην υποενότητα 1.4.1 κατασκευάζουμε την ψευδόσφαιρα του Beltrami, η οποία αντιστοιχεί στην στάσιμη μονο-σολιτονική λύση. Στην υποενότητα 1.4.2 μελετάμε το ελικοειδές που δημιουργείται από την έλκουσα καμπύλη, δηλαδή την επιφάνεια Dini, την οποία και κατασκευάζουμε. Ακολουθεί η υποενότητα 1.4.3, όπου, χρησιμοποιώντας το θεώρημα μεταθετικότητας, καταλήγουμε στην λύση δύο-σολιτονίων για την εξίσωση sine-Gordon και συνεχίζουμε με την υποενότητα 1.4.4, όπου κατασκευάζουμε περιοδικές λύσεις των δύο-σολιτονίων γνωστές ως breathers. Στο δεύτερο κεφάλαιο μελετάμε την κίνηση συγκεκριμένων καμπυλών και επιφανειών, οι οποίες οδηγούν σε σολιτονικές εξισώσεις. Ειδικότερα, στην ενότητα 2.1 καταλήγουμε στην εξίσωση sine-Gordon μέσω της κίνησης μιας μη-εκτατής καμπύλης σταθερής καμπυλότητας ή στρέψης. Ακολουθεί η ενότητα 2.2, όπου η εξίσωση sine- Gordon προκύπτει ως η συνθήκη συμβατότητας για το 2 2 γραμμικό σύστημα AKNS. Στην συνέχεια, στην ενότητα 2.3 ασχολούμαστε με την κίνηση ψευδοσφαιρικών επιφανειών. Πιο συγκεκριμένα, στην υποενότητα 2.3.1 συνδέουμε την κίνηση μιας ψευδοσφαιρικής επιφάνειας με ένα μη αρμονικό μοντέλο πλέγματος, το οποίο ενσωματώνει την εξίσωση mKdV. Επιπλέον, στην υποενότητα 2.3.2 δείχνουμε ότι η καθαρά κάθετη κίνηση μιας ψευδοσφαιρικής επιφάνειας, παράγει το κλασικό σύστημα Weingarten. Ολοκληρώνουμε την ενότητα 2.3 με την κατασκευή των μετασχηματισμών Bäcklund τόσο για το μοντέλο πλέγματος, όσο και για το σύστημα Weingarten. Το κεφάλαιο κλείνει με την ενότητα 2.4, όπου μέσω της κίνησης μιας μη εκτατής καμπύλης μηδενικής στρέψης, καταλήγουμε στην εξίσωση mKdV. Στην συνέχεια μελετάμε την κίνηση των επιφανειών Dini και τελικά κατασκευάζουμε επιφάνειες που αντιστοιχούν στο τριπλά ορθογώνιο σύστημα Weingarten. Στο τρίτο και τελευταίο κεφάλαιο επικεντρωνόμαστε στην εξίσωση NLS. Πιο συγκεκριμένα, στην ενότητα 3.1 καταλήγουμε στην εξίσωση NLS μ’ έναν καθαρά γεωμετρικό τρόπο. Επιπλέον, κατασκευάζουμε επιφάνειες, οι οποίες αντιστοιχούν στην μονο-σολιτονική λύση της εξίσωσης NLS και παρουσιάζουμε γι’ αυτές κάποιες γενικές γεωμετρικές ιδιότητες. Το κεφάλαιο 3 ολοκληρώνεται με την ενότητα 3.3 όπου αρχικά λαμβάνουμε ακόμη μια φορά την εξίσωση NLS, χρησιμοποιώντας την μελέτη στην κινηματική των Marris και Passman. Κλείνουμε και αυτό το κεφάλαιο με τον auto- Bäcklund μετασχηματισμό για την εξίσωση NLS και επιπλέον παρουσιάζουμε χωρικά περιοδικές λύσεις της, γνωστές ως smoke-ring (δαχτυλίδι-καπνού).
author2 Τσουμπελής, Δημήτρης
author_facet Τσουμπελής, Δημήτρης
Βλάχου, Αναστασία
format Thesis
author Βλάχου, Αναστασία
author_sort Βλάχου, Αναστασία
title Ολοκληρώσιμες μη γραμματικές μερικές διαφορικές εξισώσεις και διαφορική γεωμετρία
title_short Ολοκληρώσιμες μη γραμματικές μερικές διαφορικές εξισώσεις και διαφορική γεωμετρία
title_full Ολοκληρώσιμες μη γραμματικές μερικές διαφορικές εξισώσεις και διαφορική γεωμετρία
title_fullStr Ολοκληρώσιμες μη γραμματικές μερικές διαφορικές εξισώσεις και διαφορική γεωμετρία
title_full_unstemmed Ολοκληρώσιμες μη γραμματικές μερικές διαφορικές εξισώσεις και διαφορική γεωμετρία
title_sort ολοκληρώσιμες μη γραμματικές μερικές διαφορικές εξισώσεις και διαφορική γεωμετρία
publishDate 2014
url http://hdl.handle.net/10889/8074
work_keys_str_mv AT blachouanastasia oloklērōsimesmēgrammatikesmerikesdiaphorikesexisōseiskaidiaphorikēgeōmetria
_version_ 1771297145012355072
spelling nemertes-10889-80742022-09-05T05:37:59Z Ολοκληρώσιμες μη γραμματικές μερικές διαφορικές εξισώσεις και διαφορική γεωμετρία Βλάχου, Αναστασία Τσουμπελής, Δημήτρης Παπαγεωργίου, Βασίλειος Αρβανιτογεώργος, Ανδρέας Vlachou, Anastasia Σολιτόνια Σολιτονικές λύσεις Σολιτονικές επιφάνειες Βασικές έννοιες διαφορικής γεωμετρίας Εξίσωση Sine-Gordon Εξίσωση NLS Μετασχηματισμός Bäcklund Solitons Soliton solutions Soliton surfaces Basics of differential geometry Sine-Gordon equation Nonlinear Schrödinger equation Bäcklund transform 530.124 Στόχος της παρούσας εργασίας είναι η σύνδεση της μοντέρνας θεωρίας σολιτονίων με την κλασική διαφορική γεωμετρία. Ειδικότερα, αρχίζουμε με ένα εισαγωγικό μέρος, όπου παραθέτουμε τις βασικές έννοιες που αφορούν: α) Τις λύσεις μη-γραμμικών μερικών διαφορικών εξισώσεων (ΜΔΕ) που ονομάζονται σολιτόνια (solitons) και β) Την γεωμετρία των ομαλών καμπυλών και επιφανειών του Ευκλείδειου χώρου). Ακολουθεί, το δεύτερο και κύριο μέρος, στο οποίο μελετάμε την σχέση τριών χαρακτηριστικών μη-γραμμικών εξισώσεων εξέλιξης, της εξίσωσης sine-Gordon, της τροποποιημένης εξίσωσης Korteweg de Vries (mKdV) και της μη γραμμικής εξίσωσης Schrödinger (NLS), με την θεωρία καμπυλών και επιφανειών. Αναλυτικότερα, στο πρώτο μέρος και πιο συγκεκριμένα στο πρώτο κεφάλαιο παρουσιάζουμε μια ιστορική αναδρομή στην έννοια του σολιτονίου. Στην συνέχεια αναζητούμε κυματικές-σολιτονικές λύσεις για τις εξισώσεις KdV και NLS. Κλείνουμε παραθέτοντας τις προϋποθέσεις κάτω από τις οποίες μια μη γραμμική εξίσωση είναι ολοκληρώσιμη. Επιλέγουμε να αναλύσουμε δύο από αυτές τις προϋποθέσεις, χρησιμοποιώντας συγκεκριμένα παραδείγματα, ενώ, για τις άλλες δύο, περιοριζόμαστε σε μια συνοπτική περιγραφή . Στο δεύτερο κεφάλαιο του εισαγωγικού μέρους γίνεται μια εκτενής αναφορά σε θεμελιώδεις έννοιες της διαφορικής γεωμετρίας. Πιο συγκεκριμένα, οι έννοιες αυτές σχετίζονται με την θεωρία καμπυλών και επιφανειών και για ορισμένες από αυτές παρουσιάζουμε κάποια αντιπροσωπευτικά παραδείγματα. Ακολουθεί το κύριο μέρος και ειδικότερα το πρώτο κεφάλαιο, στο οποίο, μελετώντας υπερβολικές επιφάνειες, καταλήγουμε σε ένα κλασικό μη γραμμικό σύστημα εξισώσεων. Είναι αυτό που οφείλουμε στον Bianchi και το οποίο ενσωματώνει τις εξισώσεις Gauss-Mainardi-Codazzi. Στην συνέχεια, περιοριζόμαστε στις ψευδοσφαιρικές επιφάνειες και έτσι καταλήγουμε στην εξίσωση sine-Gordon. Ακολουθεί η ενότητα 1.2, στην οποία βρίσκουμε τον μετασχηματισμό auto-Bäcklund για την εξίσωση sine-Gordon και περιγράφουμε την γεωμετρική διαδικασία για την κατασκευή ψευδοσφαιρικών επιφανειών. Στην ενότητα 1.3, χρησιμοποιώντας τον παραπάνω μετασχηματισμό Bäcklund, καταλήγουμε στο Θεώρημα Αντιμεταθετικότητας του Bianchi. Συνεχίζουμε με την ενότητα 1.4, στην οποία παρουσιάζουμε ψευδοσφαιρικές επιφάνειες, οι οποίες αντιστοιχούν σε σολιτονικές λύσεις της εξίσωσης sine-Gordon. Πιο αναλυτικά, στην υποενότητα 1.4.1 κατασκευάζουμε την ψευδόσφαιρα του Beltrami, η οποία αντιστοιχεί στην στάσιμη μονο-σολιτονική λύση. Στην υποενότητα 1.4.2 μελετάμε το ελικοειδές που δημιουργείται από την έλκουσα καμπύλη, δηλαδή την επιφάνεια Dini, την οποία και κατασκευάζουμε. Ακολουθεί η υποενότητα 1.4.3, όπου, χρησιμοποιώντας το θεώρημα μεταθετικότητας, καταλήγουμε στην λύση δύο-σολιτονίων για την εξίσωση sine-Gordon και συνεχίζουμε με την υποενότητα 1.4.4, όπου κατασκευάζουμε περιοδικές λύσεις των δύο-σολιτονίων γνωστές ως breathers. Στο δεύτερο κεφάλαιο μελετάμε την κίνηση συγκεκριμένων καμπυλών και επιφανειών, οι οποίες οδηγούν σε σολιτονικές εξισώσεις. Ειδικότερα, στην ενότητα 2.1 καταλήγουμε στην εξίσωση sine-Gordon μέσω της κίνησης μιας μη-εκτατής καμπύλης σταθερής καμπυλότητας ή στρέψης. Ακολουθεί η ενότητα 2.2, όπου η εξίσωση sine- Gordon προκύπτει ως η συνθήκη συμβατότητας για το 2 2 γραμμικό σύστημα AKNS. Στην συνέχεια, στην ενότητα 2.3 ασχολούμαστε με την κίνηση ψευδοσφαιρικών επιφανειών. Πιο συγκεκριμένα, στην υποενότητα 2.3.1 συνδέουμε την κίνηση μιας ψευδοσφαιρικής επιφάνειας με ένα μη αρμονικό μοντέλο πλέγματος, το οποίο ενσωματώνει την εξίσωση mKdV. Επιπλέον, στην υποενότητα 2.3.2 δείχνουμε ότι η καθαρά κάθετη κίνηση μιας ψευδοσφαιρικής επιφάνειας, παράγει το κλασικό σύστημα Weingarten. Ολοκληρώνουμε την ενότητα 2.3 με την κατασκευή των μετασχηματισμών Bäcklund τόσο για το μοντέλο πλέγματος, όσο και για το σύστημα Weingarten. Το κεφάλαιο κλείνει με την ενότητα 2.4, όπου μέσω της κίνησης μιας μη εκτατής καμπύλης μηδενικής στρέψης, καταλήγουμε στην εξίσωση mKdV. Στην συνέχεια μελετάμε την κίνηση των επιφανειών Dini και τελικά κατασκευάζουμε επιφάνειες που αντιστοιχούν στο τριπλά ορθογώνιο σύστημα Weingarten. Στο τρίτο και τελευταίο κεφάλαιο επικεντρωνόμαστε στην εξίσωση NLS. Πιο συγκεκριμένα, στην ενότητα 3.1 καταλήγουμε στην εξίσωση NLS μ’ έναν καθαρά γεωμετρικό τρόπο. Επιπλέον, κατασκευάζουμε επιφάνειες, οι οποίες αντιστοιχούν στην μονο-σολιτονική λύση της εξίσωσης NLS και παρουσιάζουμε γι’ αυτές κάποιες γενικές γεωμετρικές ιδιότητες. Το κεφάλαιο 3 ολοκληρώνεται με την ενότητα 3.3 όπου αρχικά λαμβάνουμε ακόμη μια φορά την εξίσωση NLS, χρησιμοποιώντας την μελέτη στην κινηματική των Marris και Passman. Κλείνουμε και αυτό το κεφάλαιο με τον auto- Bäcklund μετασχηματισμό για την εξίσωση NLS και επιπλέον παρουσιάζουμε χωρικά περιοδικές λύσεις της, γνωστές ως smoke-ring (δαχτυλίδι-καπνού). The aim of this diploma thesis is to find a connection between modern soliton theory and classical differential geometry. More particularly, we begin with an introductory section, where we present the basic concepts regarding soliton equations and the geometry of smooth curves ans surfaces. This is followed by the main body of the thesis, which focuses on three partial differential equations, namely, the sine-Gordon equation, the modified Korteweg de Vries equation (mKdV) and the nonlinear Scrödinger equation (NLS), and their connection to the theory of curves and surfaces. The first introductory chapter is a historical overview of the notion of solitons. We then seek travelling wave solutions for the KdV and NLS equations. Closing, we quote the conditions under which a nonlinear equation is integrable. We choose to analyze in detail two of these conditions while we settle for a brief description of the other two. The second chapter is an extensive report on fundamental concepts of differential geometry, namely, those associated with the theory of curves and surfaces in Euclidean three-dimensional space, and we present some representative examples. Chapter 1 of the main part, opens with the derivation of a classical nonlinear system which we owe to Bianchi and embodies the Gauss-Mainardi-Codazzi equations. We then specialise to pseudospherical surfaces and produce the sine-Gordon equation. Section 1.2 includes the derivation of the auto-Bäcklund transformation for the sine-Gordon equation along with the geometric procedure for the construction of pseudospherical surfaces. In section 1.3, we use the above transformation to conclude to Bianchi’s Permutability Theorem. We continue to section 1.4, where we present certain pseudospherical surfaces. These surfaces correspond to solitonic solutions of the sine- Gordon equation, i.e. in subsection 1.4.1 we construct the pseudosphere which corresponds to the stationary single soliton solution. Also, in subsection 1.4.2 we examine the helicoid that is created by the tractrix, namely, the Dini surface. In section 1.4.3, by use of Bianchi’s Permutability Theorem, we end up in the two-soliton solution for the sine-Gordon equation and continue in the next subsection, where we present periodic two-soliton solutions, known as breathers. In Chapter 2, we show how certain motions of curves and surfaces can lead to solitonic equations. More precisely, in section 2.1, we arrive at the sine-Gordon equation, through the motion of an inextensible curve of constant curvature or torsion. Then, section 2.2 displays how the sine-Gordon equation arises as the compatibility condition for the linear 2 2 AKNS system. In section 2.3 we study the movement of pseudospherical surfaces. In particular, we connect, in subsection 2.3.1, the motion of a pseudospherical surface to a continuum version of an unharmonic lattice model, which encorporates the mKdV equation. Moreover, in subsection 2.3.2, we show that a purely normal motion of a pseudospherical surface produces the classical Weingarten system. We conclude section 2.3 by constructing the Bäcklund transformation both for the lattice model and the Weingarten system. The chapter ends with section 2.4, where through the motion of an inextensible curve of zero torsion, we produce the mKdV equation. Furthermore, we investigate the motion of Dini surfaces and, finally, construct surfaces corresponding to the triply orthogonal Weingarten system. The third and final chapter focuses on the NLS equation. In section 3.1 we produce the NLS equation through a purely geometric manner. We then construct surfaces, that correspond to the single-soliton solution of this equation, and also present certain general geometric properties of them. We conclude the final chapter with the auto-Bäcklund transformation for the NLS equation and the presentation of spatially periodic solutions, known as smoke-ring. 2014-10-09T11:26:59Z 2014-10-09T11:26:59Z 2014-07-01 2014-10-09 Thesis http://hdl.handle.net/10889/8074 gr Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. 0 application/pdf