Περίληψη: | Ανατομικές δομές με δενδρική τοπολογία απαντώνται συχνά στο ανθρώπινο σώμα και οπτικοποιούνται σε ιατρικές εικόνες χρησιμοποιώντας απεικονιστικές τεχνικές με ακτίνες-χ και τη χρήση σκιαγραφικού υλικού. Χαρακτηριστικά παραδείγματα τέτοιων δομών είναι το βρογχικό δένδρο εντός των πνευμόνων το οποίο οπτικοποιείται με εικόνες αξονικής τομογραφίας και τα γαλακτοφόρα δένδρα εσωτερικά του μαστού τα οποία οπτικοποιούνται με γαλακτογραφίες. Σκοπός της παρούσας διδακτορικής διατριβής αποτελεί η ανάπτυξη ενός συνόλου αλγοριθμικών μεθόδων για την αυτοματοποίηση της ανάλυσης των ανατομικών δομών του ανθρωπίνου σώματος που έχουν τοπολογία δένδρου ή τοπολογία δικτύου. Πιο συγκεκριμένα, οι δύο βασικοί στόχοι της διατριβής είναι η ανάπτυξη μεθόδων ειδικά σχεδιασμένων για τη ψηφιακή επεξεργασία των ιατρικών εικόνων που απεικονίζουν δομές με διακλαδώσεις και η ανάπτυξη μεθοδολογικών πλαισίων για τη διερεύνηση της σχέσης μεταξύ τοπολογίας και παθοφυσιολογίας αυτού του τύπου ανατομικών δομών.
Το πρώτο κεφάλαιο της διατριβής παρουσιάζει μια βιβλιογραφική ανασκόπηση σχετικά με τις ανατομικές δομές του ανθρωπίνου σώματος με τοπολογία διακλαδώσεων καθώς και το κίνητρο για την παρούσα έρευνα. Οι επιμέρους ερευνητικοί στόχοι, οι κύριες συνεισφορές και η γενικότερη απήχηση της διατριβής αναφέρονται επίσης.
Το δεύτερο κεφάλαιο εστιάζει στην κατάτμηση εικόνας. Η κατάτμηση εικόνας αποτελεί το πρώτο βήμα στη διαδικασία ανάλυσης ιατρικών εικόνων και στα συστήματα αναγνώρισης προτύπων και οι αλγόριθμοι κατάτμησης αποτελούν κρίσιμα τμήματα των σύγχρονων ιατρικών διαγνωστικών συστημάτων. Παρά την πλούσια βιβλιογραφία στην περιοχή, η ανάγκη για αποδοτικές μεθοδολογίες κατάτμησης εφαρμόσιμες σε μεγάλο εύρος απεικονιστικών τεχνικών παραμένει. Προσπαθώντας να αντιμετωπιστεί αυτή η ερευνητική πρόκληση, μια καινοτόμα και πλήρως αυτοματοποιημένη μεθοδολογία για την κατάτμηση των δενδρικών ανατομικών δομών παρουσιάζεται. Η βασική ιδέα είναι ο συνδυασμός τεχνικών ανίχνευσης ακμών με μεθόδους ανάπτυξης περιοχών για να επιτευχθεί αποδοτική κατάτμηση. Η υβριδική αυτή προσέγγιση εφαρμόστηκε και αξιολογήθηκε σε δύο σύνολα δεδομένων ιατρικών εικόνων από διαφορετικές απεικονιστικές τεχνικές (γαλακτογραφίες και αγγειογραφίες) και η απόδοσή της συγκρίθηκε με τεχνικές κατάτμησης της υπάρχουσας τεχνολογικής στάθμης.
Το τρίτο κεφάλαιο επικεντρώνεται στην ανίχνευση των κόμβων διακλάδωσης το οποίο συνιστά ένα σημαντικό υπολογιστικό στάδιο στα πλαίσια της επεξεργασίας των ιατρικών εικόνων που απεικονίζουν δομές δενδρικής τοπολογίας. Οι κόμβοι διακλάδωσης αποτελούν σημεία-κλειδιά για τον προσδιορισμό της θέσης του δένδρου και η σωστή ανίχνευσή τους είναι ένα σημαντική για την αυτοματοποίηση διαδικασιών επεξεργασίας εικόνας όπως ευθυγράμμιση εικόνας, κατάτμηση εικόνας και ανάλυση των προτύπων διακλάδωσης. Ωστόσο, η ανάπτυξη αυτοματοποιημένων τεχνικών για την ανίχνευση των κόμβων διακλάδωσης δυσχεραίνεται από τα διαφορετικά επίπεδα θορύβου που υπάρχουν κατά μήκος της δενδρικής δομής. Η προτεινόμενη μεθοδολογία ανίχνευσης απαρτίζεται από δύο κύρια στάδια: ανίχνευση γωνιακών σημείων σε διάφορες κλίμακες και προσδιορισμό της θέσης της διακλάδωσης. Η βασική συνεισφορά της νέας μεθοδολογίας είναι η χρήση ενός τοπικά προσαρμοζόμενου κατωφλιού κατά τη φάση της ανίχνευσης προκειμένου να αντιμετωπιστεί αποδοτικά η ανίχνευση των σημείων διακλάδωσης που βρίσκονται στα χαμηλά δενδρικά επίπεδα. Η αξιολόγηση της μεθόδου πραγματοποιήθηκε χρησιμοποιώντας ένα σύνολο δεδομένων από κλινικές γαλακτογραφίες και η απόδοσης της συγκρίνεται με αντίστοιχες τεχνικές της υπάρχουσας τεχνολογικής στάθμης.
Στο τέταρτο κεφάλαιο παρουσιάζονται καινοτόμες μεθοδολογίες για τον χαρακτηρισμό και την κατηγοριοποίηση των ανατομικών δενδρικών δομών στοχεύοντας στη διερεύνηση της συσχέτισης μεταξύ τοπολογίας και παθολογίας των αντίστοιχων οργάνων. Οι μέθοδοι περιλαμβάνουν κατηγοριοποίηση χρησιμοποιώντας περιγραφικά χαρακτηριστικά της τοπολογίας όπως η δενδρική ασυμμετρία, η χωρική κατανομή των σημείων διακλάδωσης, η στρεβλότητα των κλάδων και άλλα γεωμετρικά χαρακτηριστικά του δένδρου. Επιπρόσθετα σε αυτό το κεφάλαιο, ένα νέο μεθοδολογικό πλαίσιο προτείνεται για την ανάλυση δενδρικών τοπολογιών χρησιμοποιώντας διανύσματα που κωδικοποιούν τις σχέσεις παιδιού-γονέα των κόμβων και ελαστικό ταίριασμα μεταξύ των ακολουθιών. Η υπεροχή της νέας αυτής μεθόδου έναντι των μεθόδων της υπάρχουσας τεχνολογικής στάθμης για την κατηγοριοποίηση δένδρων αξιολογήθηκε πειραματικά ως προς ευαισθησία, ειδικότητα και ακρίβεια.
Στο πέμπτο κεφάλαιο μελετώνται τεχνικές συλλογικής μάθησης. Η ενοποίηση πολλαπλών αλγορίθμων μηχανικής μάθησης συνιστά σημαντική πρόοδο για τις μεθοδολογίες κατηγοριοποίησης και βασίζεται στην ιδέα του συνδυασμού των προβλέψεων ενός πλήθους κατηγοριοποιητών με σκοπό τη μεγιστοποίηση της ακρίβειας κατηγοριοποίησης. Τρεις τεχνικές συνδυαστικής μάθησης βασισμένες στην τεχνική της ενδυνάμωσης (boosting) και η χρήση ενός συνδυαστικού κανόνα που ονομάζεται Πρότυπο Απόφασης (Decision Template) χρησιμοποιούνται για τη βελτιστοποίηση της ακρίβειας που επιτυγχάνουν οι κατηγοριοποιητές βάσης. Τα πειραματικά αποτελέσματα επιβεβαιώνουν την υπεροχή των μεθόδων συλλογικής μάθησης.
Κλείνοντας, τα συμπεράσματα της διατριβής παρουσιάζονται στο έκτο κεφάλαιο. Οι περιορισμοί των προτεινόμενων τεχνικών καθώς και οι προοπτικές για επιπρόσθετη ερευνητική εργασία αναλύονται.
|