Methodologies for remaining useful life estimation with multiple sensors in rotating machinery

The focus of this thesis was the development of failure prognosis methods (prognostics) in rotating machinery with use of multiple sensors digital signal processing and machine learning techniques. The motivation stems from the void in literature concerning prognostics in meshing gearboxes. Moreover...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Δημήτριος, Ρούλιας
Άλλοι συγγραφείς: Κωστόπουλος, Βασίλειος
Μορφή: Thesis
Γλώσσα:English
Έκδοση: 2015
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/8258
Περιγραφή
Περίληψη:The focus of this thesis was the development of failure prognosis methods (prognostics) in rotating machinery with use of multiple sensors digital signal processing and machine learning techniques. The motivation stems from the void in literature concerning prognostics in meshing gearboxes. Moreover, there are several but inconclusive works regarding bearing prognosis. Few research groups have studied multi-hour fatigue gear experiments and this was one of the contributions of this thesis. Moreover, the study expanded beyond the sheer application of vibration monitoring with the addition of an Oil Debris Monitoring probe (ODM) as well as Acoustic emission (AE). The method of AE monitoring is, once again, proposed as a robust technique for failure prognosis being better correlated with gear pitting level compared to the classic vibration monitoring technique. Moreover, judging from ODM recordings the gear pitting comprises of two phases i) a linear phase, with an almost constant pitting rate and ii) a very short non linear phase where the pitting rate increases exponentially, an explicit indication of a critical failure. Multi-hour gear experiments that are close to real scale applications are very demanding in time as well as in invested capital. To bypass this shortfall a gear failure like simulation is proposed. The simulation framework is based on real life experiments and is applied to assess a number of data-driven Remaining Useful Life (RUL) estimation techniques namely i) Proportional Hazards Μodel (PHM), ii) ε- Support Vector Regression ε-SVR and iii) Exponential extrapolation based on bootstrap sampling. In the current thesis a feature extraction scheme for prognosis is proposed and assessed based on time domain, frequency domain statistical features and Wavelet Packet (WP) energy derived from AE and vibration recordings. ICA is proposed as a preferable fusion technique for gear failure prognostics. Application of ICA for feature fusion provided a clear improvement regarding the earlier presented bootstrap extrapolation technique. Bearings are also taken into account since they are closely connected to gearboxes. In the current thesis a wavelet denoising method is proposed for bearing vibration recordings aiming to the improvement of the diagnostic and prognostic potential of vibration. Finally the importance of data fusion is highlighted in the case of bearings. It is observed that a feature extraction scheme can generalize the application of prognostics, even in cases where RMS may yield no important degradation trend.