Εξαγωγή αποδοτικών και ερμηνεύσιμων επενδυτικών κανόνων με χρήση μεθόδων υπολογιστικής νοημοσύνης

Ο σκοπός της παρούσας διπλωματικής εργασίας είναι η δημιουργία μιας μεθόδου για την εξαγωγή αποδοτικών και ερμηνεύσιμων επενδυτικών κανόνων με χρήση μεθόδων υπολογιστικής νοημοσύνης. Οι επενδυτικοί αυτοί κανόνες εξάγονται αυτόματα από το σύστημα και υποδεικνύουν τη στρατηγική που πρέπει να ακολουθήσ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Αμοργιανιώτης, Θωμάς
Άλλοι συγγραφείς: Λυκοθανάσης, Σπυρίδων
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2015
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/8480
Περιγραφή
Περίληψη:Ο σκοπός της παρούσας διπλωματικής εργασίας είναι η δημιουργία μιας μεθόδου για την εξαγωγή αποδοτικών και ερμηνεύσιμων επενδυτικών κανόνων με χρήση μεθόδων υπολογιστικής νοημοσύνης. Οι επενδυτικοί αυτοί κανόνες εξάγονται αυτόματα από το σύστημα και υποδεικνύουν τη στρατηγική που πρέπει να ακολουθήσει ένας χρήστης. Αποκαλύπτουν το συσχετισμό των εισόδων και παρέχουν πληροφορίες για κερδοφόρες επενδυτικές στρατηγικές. Η υπολογιστική νοημοσύνη (computational intelligence) αποτελεί παρακλάδι της τεχνητής νοημοσύνης το οποίο περιλαμβάνει τον σχεδιασμό και την ανάπτυξη θεωριών και μεθόδων, βασιζόμενη στην κατανόηση της βιολογίας και της προσπάθειας για εφαρμογή σε προβλήματα του πραγματικού κόσμου. Ένα σύστημα είναι υπολογιστικά ευφυές όταν: ασχολείται μόνο με αριθμητικά (χαμηλού επιπέδου) δεδομένα, έχει συστατικά αναγνώρισης προτύπων, δεν χρησιμοποιεί γνώσεις στην μορφή της τεχνητή νοημοσύνης και επιπλέον, εμφανίζει i) υπολογιστική προσαρμοστικότητα, ii) υπολογιστική ανοχή σε σφάλματα, iii) επιτάχυνση που προσεγγίζει την ανθρώπινη, και iv) τα ποσοστά σφάλματός του προσεγγίζουν την ανθρώπινη απόδοση. Οι αλγόριθμοι της υπολογιστικής νοημοσύνης αποτελούνται από μοντέλα που εκπαιδεύονται από τα παραδείγματα με την βοήθεια ενός δασκάλου (επιβλεπόμενη μάθηση) και μοντέλα τα οποία προσαρμόζονται μόνα τους (μη επιβλεπόμενη μάθηση). Το πρόβλημα στις παρούσες προσεγγίσεις για την πρόβλεψη οικονομικών δεικτών εντοπίζεται στην μη ερμηνευσιμότητα των αποτελεσμάτων. Ενώ υπάρχουν δυνατά υπολογιστικά μοντέλα, όπως οι γενετικοί αλγόριθμοι και οι μηχανές διανυσμάτων υποστήριξης, τα αποτελέσματα τους δεν είναι ερμηνεύσιμα. Από την άλλη τα μοντέλα της ασαφούς λογικής ενώ παρουσιάζουν ερμηνεύσιμα αποτελέσματα δεν έχουν την δύναμη να παράγουν αποδοτικούς κανόνες. Το μοντέλο που προτείνεται σε αυτή την εργασία συνδυάζει τις τρεις προαναφερθείσες μεθόδους ονομάζεται ESVM-Fuzzy Inference Trader. Το προτεινόμενο μοντέλο χρησιμοποιείται για την πρόβλεψη των δεικτών DAX και FTSE 100. Τα αποτελέσματα του ESVM Fuzzy Inference Trader ξεπέρασαν σε απόδοση τις παραδοσιακές μεθόδους καθώς και μια εξελιγμένη τεχνική μηχανικής μάθησης.