Περίληψη: | Η ευαισθησία των συστημάτων είναι ένα σημαντικό θέμα της Θεωρίας Συστημάτων, το οποίο καλύπτεται σε εισαγωγικό επίπεδο με αυτή την εργασία. Η ευαισθησία αφορά τις διαφορές ανάμεσα στο πραγματικό σύστημα και στο μαθηματικό μοντέλο: αν κάποιες παράμετροι διαφέρουν αρκετά ανάμεσα στο πραγματικό σύστημα και στο μαθηματικό μοντέλο και η συμπεριφορά του συστήματος εξαρτάται κατά μεγάλο βαθμό από αυτές τις παραμέτρους, τότε η χρησιμότητα του μαθηματικού μοντέλου θα είναι πολύ μικρή αν δεν γνωρίζουμε ταυτόχρονα την παραμετρική ευαισθησία του συστήματος, δηλαδή την επίδραση των μεταβολών των παραμέτρων πάνω στην δυναμική συμπεριφορά του συστήματος. Βασικό ρόλο παίζει η προσομοίωση των εξισώσεων ευαισθησίας κατάστασης. Καθορίζουμε αρχικά τις εξισώσεις ευαισθησίας κατάστασης για παραμέτρους τύπου α και δείχνουμε ότι οι συναρτήσεις ευαισθησίας κατάστασης ενός συνεχούς συστήματος με χρονικά αμετάβλητες παραμέτρους καθορίζονται πάντα από ένα γραμμικό σύστημα διαφορικών εξισώσεων με μηδενικές αρχικές συνθήκες. Στην συνέχεια θα επεκταθούμε και στην εύρεση των συναρτήσεων ευαισθησίας κατάστασης για την περίπτωση που έχουμε παραμέτρους τύπου β και θα δούμε ότι και εδώ οι εξισώσεις ευαισθησίας κατάστασης είναι πάντα γραμμικές και οι αρχικές συνθήκες είναι ή μηδέν ή μονάδα. Στη συνέχεια προχωράμε στην εύρεση των συναρτήσεων ευαισθησίας κατάστασης για την περίπτωση που έχουμε παραμέτρους τύπου λ, αφού δούμε πρώτα το πότε μπορούμε να χρησιμοποιήσουμε το μειωμένο ονομαστικό μοντέλο. Επί πλέον, εξετάζουμε εν συντομία και τον καθορισμό των εξισώσεων ευαισθησίας εξόδου. Για την περίπτωση που έχουμε να μελετήσουμε και να συγκρίνουμε την παραμετρική ευαισθησία συστημάτων ανοικτού και κλειστού βρόχου καθώς επίσης και στην σύνθεση συστημάτων "αναίσθητων" σε παραμετρικές μεταβολές, είναι αναγκαίο να έχουμε έναν ορισμό ευαισθησίας που να είναι ανεξάρτητος από την μορφή του σήματος εισόδου, αλλά να εξαρτάται μόνο από την δομή του συστήματος. Αυτή η απαίτηση ικανοποιείται με τους ορισμούς ευαισθησίας στο πεδίο συχνότητας, οι οποίοι βασίζονται στην συνάρτηση μεταφοράς ή στον πίνακα μεταφοράς του συστήματος. Εξετάζουμε τη συνάρτηση ευαισθησίας του Bode, τη συνάρτηση ευαισθησίας του Horowitz και τη συγκριτική συνάρτηση ευαισθησίας των Perkins και Cruz. Η τελευταία μπορεί να γενικευθεί και σε μη γραμμικά, χρονικά μεταβαλλόμενα συστήματα.
|