Χρήση της OLAP τεχνικής στην οπτικοποίηση κανόνων Data mining

Η διαδικασία εξόρυξης από δεδομένα [Data Mining] αποτελεί μια συνεχώς αναπτυσσόμενη διαδικασία ανακάλυψης γνώσης μέσω της εξαγωγής μέχρι πρότινος άγνωστης πληροφορίας από μεγάλες εμπορικές και επιστημονικές βάσεις δεδομένων. Η διαδικασία εξόρυξης από δεδομένα εξάγει κανόνες δια μέσου της επεξεργασία...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Γκίζα, Ειρήνη
Άλλοι συγγραφείς: Βουτσινάς, Βασίλης
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2008
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/862
id nemertes-10889-862
record_format dspace
institution UPatras
collection Nemertes
language Greek
topic Εξόρυξη από δεδομένα
Οπτικοποίηση
Κατηγοριοποίηση
Ταξινόμηση
Συσχέτιση
OLAP ανάλυση
Data Mining
Visualization
Classification
Clustering
Association
OLAP analysis
001.422 6
spellingShingle Εξόρυξη από δεδομένα
Οπτικοποίηση
Κατηγοριοποίηση
Ταξινόμηση
Συσχέτιση
OLAP ανάλυση
Data Mining
Visualization
Classification
Clustering
Association
OLAP analysis
001.422 6
Γκίζα, Ειρήνη
Χρήση της OLAP τεχνικής στην οπτικοποίηση κανόνων Data mining
description Η διαδικασία εξόρυξης από δεδομένα [Data Mining] αποτελεί μια συνεχώς αναπτυσσόμενη διαδικασία ανακάλυψης γνώσης μέσω της εξαγωγής μέχρι πρότινος άγνωστης πληροφορίας από μεγάλες εμπορικές και επιστημονικές βάσεις δεδομένων. Η διαδικασία εξόρυξης από δεδομένα εξάγει κανόνες δια μέσου της επεξεργασίας κατηγορικών ή αριθμητικών δεδομένων, από βάσεις πολλών διαστάσεων (> από 4 χαρακτηριστικά). Η ταξινόμηση, η ομαδοποίηση και η συσχέτιση αποτελούν τις πιο γνωστές και πλέον χρησιμοποιούμενες τεχνικές Data Mining. Ωστόσο συνήθως και οι κανόνες που εξάγονται από τα δεδομένα μπορεί να είναι πολλοί και δυσνόητοι στον τελικό χρήστη/ αναλυτή ο οποίος ενδέχεται να μην είναι εξοικειωμένος με τις τεχνικές της Μηχανικής Μάθησης. Προκειμένου να επιλυθεί αυτό το πρόβλημα τα τελευταία έτη έχουν αναπτυχθεί διάφορες τεχνικές οπτικοποίησης (Visualization) τόσο των δεδομένων που χρησιμοποιούνται κατά τη διαδικασία Data Mining (ανεπεξέργαστα δεδομένα) όσο και των κανόνων που εξάγονται από την εφαρμογή της. Όλες οι τεχνικές οπτικοποίησης προσπαθούν να εκμεταλλευτούν την αντιληπτική ικανότητα του χρήστη στην κατανόηση των εξαγόμενων προτύπων. Επιπρόσθετα ο χρήστης τείνει να εμπιστεύεται περισσότερο ένα αποτέλεσμα όταν το κατανοεί πλήρως. Ο σκοπός των τεχνικών οπτικοποίησης συνίσταται ακριβώς σε αυτό. Στη διεθνή βιβλιογραφία έχουν παρουσιαστεί αρκετές μέθοδοι οπτικής παρουσίασης των δεδομένων ενώ τα τελευταία χρόνια η επιστημονική κοινότητα έχει εστιάσει το ενδιαφέρον της και στην οπτικοποίηση των αποτελεσμάτων του Data Mining. Στόχος της παρούσας διπλωματικής εργασίας είναι πέρα από την παράθεση των τεχνικών οπτικής παρουσίασης των εξαγόμενων κανόνων των διαδικασιών συσχέτισης [association], ταξινόμησης [classification] και [clustering] που έχουν παρουσιαστεί από την επιστημονική κοινότητα την τελευταία εικοσαετία, η παρουσίαση μιας νέας τεχνικής οπτικοποίησης των κανόνων data mining με χρήση της τεχνολογίας On Line Analytical Processing [OLAP]. Σε πιο ειδικό πλαίσιο, η προτεινόμενη τεχνική χρησιμοποιεί το δυσδιάστατο πίνακα που χρησιμοποιούν τα περισσότερα OLAP μοντέλα και την έννοια της ιεραρχίας προκειμένου να οπτικοποιήσει ένα σημαντικό αριθμό κανόνων data mining και από τις τρεις (3) προαναφερόμενες τεχνικές. Επίσης, παρουσιάζονται τα πειραματικά αποτελέσματα της οπτικοποίησης που δείχνουν πώς η προτεινόμενη τεχνική είναι χρήσιμη στην ανάλυση και στην κατανόηση των εξαγόμενων κανόνων.
author2 Βουτσινάς, Βασίλης
author_facet Βουτσινάς, Βασίλης
Γκίζα, Ειρήνη
format Thesis
author Γκίζα, Ειρήνη
author_sort Γκίζα, Ειρήνη
title Χρήση της OLAP τεχνικής στην οπτικοποίηση κανόνων Data mining
title_short Χρήση της OLAP τεχνικής στην οπτικοποίηση κανόνων Data mining
title_full Χρήση της OLAP τεχνικής στην οπτικοποίηση κανόνων Data mining
title_fullStr Χρήση της OLAP τεχνικής στην οπτικοποίηση κανόνων Data mining
title_full_unstemmed Χρήση της OLAP τεχνικής στην οπτικοποίηση κανόνων Data mining
title_sort χρήση της olap τεχνικής στην οπτικοποίηση κανόνων data mining
publishDate 2008
url http://nemertes.lis.upatras.gr/jspui/handle/10889/862
work_keys_str_mv AT nkizaeirēnē chrēsētēsolaptechnikēsstēnoptikopoiēsēkanonōndatamining
AT nkizaeirēnē visualizationofdataminingrulesusingolap
_version_ 1771297279569821696
spelling nemertes-10889-8622022-09-05T20:20:30Z Χρήση της OLAP τεχνικής στην οπτικοποίηση κανόνων Data mining Visualization of Data mining rules using OLAP Γκίζα, Ειρήνη Βουτσινάς, Βασίλης Βουτσινάς, Βασίλης Γαροφαλάκης, Ιωάννης Χατζυλυγερούδης, Ιωάννης Gkiza, Irene Εξόρυξη από δεδομένα Οπτικοποίηση Κατηγοριοποίηση Ταξινόμηση Συσχέτιση OLAP ανάλυση Data Mining Visualization Classification Clustering Association OLAP analysis 001.422 6 Η διαδικασία εξόρυξης από δεδομένα [Data Mining] αποτελεί μια συνεχώς αναπτυσσόμενη διαδικασία ανακάλυψης γνώσης μέσω της εξαγωγής μέχρι πρότινος άγνωστης πληροφορίας από μεγάλες εμπορικές και επιστημονικές βάσεις δεδομένων. Η διαδικασία εξόρυξης από δεδομένα εξάγει κανόνες δια μέσου της επεξεργασίας κατηγορικών ή αριθμητικών δεδομένων, από βάσεις πολλών διαστάσεων (> από 4 χαρακτηριστικά). Η ταξινόμηση, η ομαδοποίηση και η συσχέτιση αποτελούν τις πιο γνωστές και πλέον χρησιμοποιούμενες τεχνικές Data Mining. Ωστόσο συνήθως και οι κανόνες που εξάγονται από τα δεδομένα μπορεί να είναι πολλοί και δυσνόητοι στον τελικό χρήστη/ αναλυτή ο οποίος ενδέχεται να μην είναι εξοικειωμένος με τις τεχνικές της Μηχανικής Μάθησης. Προκειμένου να επιλυθεί αυτό το πρόβλημα τα τελευταία έτη έχουν αναπτυχθεί διάφορες τεχνικές οπτικοποίησης (Visualization) τόσο των δεδομένων που χρησιμοποιούνται κατά τη διαδικασία Data Mining (ανεπεξέργαστα δεδομένα) όσο και των κανόνων που εξάγονται από την εφαρμογή της. Όλες οι τεχνικές οπτικοποίησης προσπαθούν να εκμεταλλευτούν την αντιληπτική ικανότητα του χρήστη στην κατανόηση των εξαγόμενων προτύπων. Επιπρόσθετα ο χρήστης τείνει να εμπιστεύεται περισσότερο ένα αποτέλεσμα όταν το κατανοεί πλήρως. Ο σκοπός των τεχνικών οπτικοποίησης συνίσταται ακριβώς σε αυτό. Στη διεθνή βιβλιογραφία έχουν παρουσιαστεί αρκετές μέθοδοι οπτικής παρουσίασης των δεδομένων ενώ τα τελευταία χρόνια η επιστημονική κοινότητα έχει εστιάσει το ενδιαφέρον της και στην οπτικοποίηση των αποτελεσμάτων του Data Mining. Στόχος της παρούσας διπλωματικής εργασίας είναι πέρα από την παράθεση των τεχνικών οπτικής παρουσίασης των εξαγόμενων κανόνων των διαδικασιών συσχέτισης [association], ταξινόμησης [classification] και [clustering] που έχουν παρουσιαστεί από την επιστημονική κοινότητα την τελευταία εικοσαετία, η παρουσίαση μιας νέας τεχνικής οπτικοποίησης των κανόνων data mining με χρήση της τεχνολογίας On Line Analytical Processing [OLAP]. Σε πιο ειδικό πλαίσιο, η προτεινόμενη τεχνική χρησιμοποιεί το δυσδιάστατο πίνακα που χρησιμοποιούν τα περισσότερα OLAP μοντέλα και την έννοια της ιεραρχίας προκειμένου να οπτικοποιήσει ένα σημαντικό αριθμό κανόνων data mining και από τις τρεις (3) προαναφερόμενες τεχνικές. Επίσης, παρουσιάζονται τα πειραματικά αποτελέσματα της οπτικοποίησης που δείχνουν πώς η προτεινόμενη τεχνική είναι χρήσιμη στην ανάλυση και στην κατανόηση των εξαγόμενων κανόνων. Data Mining is an emerging knowledge discovery process of extracting previously unknown, actionable information from very large scientific and commercial databases. Usually, a data mining process extracts rules by processing high dimensional categorical and/or numerical data (> 4 attributes). Classification, Clustering and Association constitute for the most well known Data Mining tasks. However, in the data mining context often the user has to analyze hundreds of extracted rules in order to grasp valuable knowledge. Thus, the analysis of such rules by means of visual tools has evolved rapidly in recent years. Visual data mining attempts to take advantage of humans’ ability to perceive pattern and structure in visual form. The end user trusts more a result if he understand it completely. And this is the purpose of visual techniques. There have been proposed many techniques for visualizing the data in literature, whereas the last years many researchers have focused on the visualization of data mining results (knowledge visualization). Researchers have developed many tools to visualize data mining rules. However, few of these tools can handle effectively more than some dozens of data mining rules. In this thesis, we propose a new visualization technique of data mining rules based On Line Analytical Processing [OLAP]. More specifically, the proposed technique utilizes the standard two dimensional cross-tabulation table of most OLAP models in order to visualize even a great number of data mining rules from all techniques. We also present experimental results that demonstrate how the proposed technique is useful and helpful for analyzing and understanding extracted data mining rules. 2008-08-27T07:25:50Z 2008-08-27T07:25:50Z 2007 2008-08-27T07:25:50Z Thesis http://nemertes.lis.upatras.gr/jspui/handle/10889/862 gr Η ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. 0 application/pdf