Περίληψη: | Υπό το φάσμα της νέας, ανερχόμενης κοινωνίας της πληροφορίας, η σύγκλιση των υπολογιστών με τις τηλεπικοινωνίες έχει οδηγήσει στην συνεχώς αυξανόμενη παραγωγή και αποθήκευση τεράστιου όγκου δεδομένων σχεδόν για οποιονδήποτε τομέα της ανθρώπινης ενασχόλησης. Αν, λοιπόν, τα δεδομένα αποτελούν τα καταγεγραμμένα γεγονότα της ανθρώπινης ενασχόλησης, οι πληροφορίες αποτελούν τους κανόνες, που τα διέπουν. Και η κοινωνία στηρίζεται και αναζητά διακαώς νέες πληροφορίες. Το μόνο που απομένει, είναι η ανακάλυψη τους.
Ο τομέας, που ασχολείται με την συστηματική ανάλυση των δεδομένων με σκοπό την εξαγωγή χρήσιμης γνώσης ονομάζεται μηχανική μάθηση. Υπό αυτό, λοιπόν, το πρίσμα, η παρούσα διπλωματική πραγματεύεται την μηχανική μάθηση ως μια ελπίδα των επιστημόνων να αποσαφηνίσουν τις δομές που διέπουν τα δεδομένα και να ανακαλύψουν και να κατανοήσουν τους κανόνες, που “κινούν” τον φυσικό κόσμο.
Αρχικά, πραγματοποιείται μια πρώτη περιγραφή της μηχανικής μάθησης ως ένα από τα βασικότερα δομικά στοιχεία της τεχνητής νοημοσύνης, παρουσιάζοντας ταυτόχρονα μια πληθώρα προβλημάτων, στα οποία μπορεί να βρει λύση, ενώ γίνεται και μια σύντομη ιστορική αναδρομή της πορείας και των κομβικών της σημείων.
Ακολούθως, πραγματοποιείται μια όσο το δυνατόν πιο εμπεριστατωμένη περιγραφή, μέσω χρήσης εκτεταμένης βιβλιογραφίας, σχεδιαγραμμάτων και λειτουργικών παραδειγμάτων των βασικότερων κλάδων της, όπως είναι η επιβλεπόμενη μάθηση (δέντρα αποφάσεων, νευρωνικά δίκτυα), η μη-επιβλεπόμενη μάθηση (συσταδοποίηση δεδομένων), καθώς και πιο εξειδικευμένων μορφών της, όπως είναι η ημί-επιβλεπόμενη μηχανική μάθηση και οι γενετικοί αλγόριθμοι.
Επιπρόσθετα, σχεδιάζεται και υλοποιείται ένας νέος πιθανοτικός αλγόριθμος συσταδοποίησης (clustering) δεδομένων, ο οποίος ουσιαστικά αποτελεί ένα υβρίδιο ενός ιεραρχικού αλγορίθμου ομαδοποίησης και ενός αλγορίθμου διαμέρισης. Ο αλγόριθμος δοκιμάστηκε σε ένα πλήθος διαφορετικών συνόλων, πετυχαίνοντας αρκετά ενθαρρυντικά αποτελέσματα, συγκριτικά με άλλους γνωστούς αλγορίθμους, όπως είναι ο k-means και ο single-linkage. Πιο συγκεκριμένα, ο αλγόριθμος κατασκευάζει συστάδες δεδομένων, με μεγαλύτερη ομοιογένεια κατά πλειοψηφία σε σχέση με τους παραπάνω, ενώ το σημαντικότερο πλεονέκτημά του είναι ότι δεν χρειάζεται κάποια αντίστοιχη παράμετρο k για να λειτουργήσει.
Τέλος, γίνονται προτάσεις τόσο για περαιτέρω βελτίωση του παραπάνω αλγορίθμου, όσο και για την ανάπτυξη νέων τεχνικών και μεθόδων, εναρμονισμένων με τις σύγχρονες τάσεις της αγοράς και προσανατολισμένων προς τις απαιτητικές ανάγκες της νέας, αναδυόμενης κοινωνίας της πληροφορίας.
|