A numerical approach for the shape optimization of woven fabric composite structural elements
In the present thesis a novel numerical approach for the optimization of composite structures fabricated from woven composite materials is developed. The aim is to increase the ultimate strength of the structure while at the same time decreasing its weight. The numerical approach is based on a combi...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
2015
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10889/8821 |
id |
nemertes-10889-8821 |
---|---|
record_format |
dspace |
institution |
UPatras |
collection |
Nemertes |
language |
English |
topic |
Shape optimization Numerical modelling Composite materials Composite structures Numerical approach Βελτιστοποίηση γεωμετρίας Αριθμητική μεθοδολογία Σύνθετα υλικά Δομικά στοιχέια Αριθμητική μοντελοποίηση 620.118 4 |
spellingShingle |
Shape optimization Numerical modelling Composite materials Composite structures Numerical approach Βελτιστοποίηση γεωμετρίας Αριθμητική μεθοδολογία Σύνθετα υλικά Δομικά στοιχέια Αριθμητική μοντελοποίηση 620.118 4 Κουμπιάς, Αντώνιος A numerical approach for the shape optimization of woven fabric composite structural elements |
description |
In the present thesis a novel numerical approach for the optimization of composite structures fabricated from woven composite materials is developed. The aim is to increase the ultimate strength of the structure while at the same time decreasing its weight. The numerical approach is based on a combination of the numerical algorithm of progressive damage modelling (PDM), along with shape optimization (SO) in an iterative subroutine. PDM, which is comprised of three steps, namely stress analysis, failure analysis and material property degradation, is used to predict the initiation and propagation of failure in the structure. During the phase of SO certain geometrical parameters are varied within limits in order to minimize the stresses that lead the structure to ultimate failure as indicated by PDM results. Finally the resulting geometry is solved with PDM to ensure the enhancement in the ultimate strength and the decrease in ultimate weight.
Within the frame of this approach, a new methodology for the numerical modeling and the simulation of mechanical behavior of woven composite materials is proposed. The highly inhomogeneous nature of woven composite materials in the micro-scale is taken under consideration to create accurate representative volume element (RVE) FE models which represent the actual material. Then PDM is used for the simulation of their mechanical response. The calculated properties, in terms of stiffnesses and strengths, are then inserted as inputs in the global FE model of the composite structure. Additionally, the reliability and applicability of a continuum damage model (CDM), in comparison with cohesive zone model (CZM), are assessed in order to use the CDM for the modeling of the adhesive’s mechanical behavior.
The mentioned numerical approach is applied in an H-shaped joining element fabricated from two different woven composite materials for the loading case of tension. In the first case NCF composite is used while in the second case the joint is made of 3D fully interlaced weave (FIW) composite. The purpose of the H-shaped element is the joining of two composite plates via the method of adhesive bonding. |
author2 |
Παντελάκης, Σπυρίδων |
author_facet |
Παντελάκης, Σπυρίδων Κουμπιάς, Αντώνιος |
format |
Thesis |
author |
Κουμπιάς, Αντώνιος |
author_sort |
Κουμπιάς, Αντώνιος |
title |
A numerical approach for the shape optimization of woven fabric composite structural elements |
title_short |
A numerical approach for the shape optimization of woven fabric composite structural elements |
title_full |
A numerical approach for the shape optimization of woven fabric composite structural elements |
title_fullStr |
A numerical approach for the shape optimization of woven fabric composite structural elements |
title_full_unstemmed |
A numerical approach for the shape optimization of woven fabric composite structural elements |
title_sort |
numerical approach for the shape optimization of woven fabric composite structural elements |
publishDate |
2015 |
url |
http://hdl.handle.net/10889/8821 |
work_keys_str_mv |
AT koumpiasantōnios anumericalapproachfortheshapeoptimizationofwovenfabriccompositestructuralelements AT koumpiasantōnios arithmētikēmethodologiagiatēnbeltistopoiēsētēsgeōmetriasdomikōnstoicheiōnapoplegmenasynthetaylika AT koumpiasantōnios numericalapproachfortheshapeoptimizationofwovenfabriccompositestructuralelements |
_version_ |
1771297285256249344 |
spelling |
nemertes-10889-88212022-09-05T20:24:58Z A numerical approach for the shape optimization of woven fabric composite structural elements Αριθμητική μεθοδολογία για την βελτιστοποίηση της γεωμετρίας δομικών στοιχείων από πλεγμένα σύνθετα υλικά Κουμπιάς, Αντώνιος Παντελάκης, Σπυρίδων Παντελάκης, Σπυρίδων Τσερπές, Κωνσταντίνος Λαμπέας, Γεώργιος Gibson, Geoff Κερμανίδης, Θεώδορος Σαραβάνος, Δημήτριος Παπαδόπουλος, Χρήστος Koumpias, Antonios Shape optimization Numerical modelling Composite materials Composite structures Numerical approach Βελτιστοποίηση γεωμετρίας Αριθμητική μεθοδολογία Σύνθετα υλικά Δομικά στοιχέια Αριθμητική μοντελοποίηση 620.118 4 In the present thesis a novel numerical approach for the optimization of composite structures fabricated from woven composite materials is developed. The aim is to increase the ultimate strength of the structure while at the same time decreasing its weight. The numerical approach is based on a combination of the numerical algorithm of progressive damage modelling (PDM), along with shape optimization (SO) in an iterative subroutine. PDM, which is comprised of three steps, namely stress analysis, failure analysis and material property degradation, is used to predict the initiation and propagation of failure in the structure. During the phase of SO certain geometrical parameters are varied within limits in order to minimize the stresses that lead the structure to ultimate failure as indicated by PDM results. Finally the resulting geometry is solved with PDM to ensure the enhancement in the ultimate strength and the decrease in ultimate weight. Within the frame of this approach, a new methodology for the numerical modeling and the simulation of mechanical behavior of woven composite materials is proposed. The highly inhomogeneous nature of woven composite materials in the micro-scale is taken under consideration to create accurate representative volume element (RVE) FE models which represent the actual material. Then PDM is used for the simulation of their mechanical response. The calculated properties, in terms of stiffnesses and strengths, are then inserted as inputs in the global FE model of the composite structure. Additionally, the reliability and applicability of a continuum damage model (CDM), in comparison with cohesive zone model (CZM), are assessed in order to use the CDM for the modeling of the adhesive’s mechanical behavior. The mentioned numerical approach is applied in an H-shaped joining element fabricated from two different woven composite materials for the loading case of tension. In the first case NCF composite is used while in the second case the joint is made of 3D fully interlaced weave (FIW) composite. The purpose of the H-shaped element is the joining of two composite plates via the method of adhesive bonding. Στην παρούσα διατριβή αναπτύχθηκε μια νέα μέθοδος αριθμητικής βελτιστοποίησης δομικών στοιχείων από σύνθετα υλικά με σκοπό την αύξηση της αντοχής τους. Η μέθοδος βασίζεται σε έναν αριθμητικό αλγόριθμο Προοδευτικής Εξέλιξης της Βλάβης (ΠΕΒ) και τη Βελτιστοποίηση Σχήματος (ΒΣ) τα οποία συνδυάζονται σε μια επαναληπτική υπό-ρουτίνα. Στην ΠΕΒ περιλαμβάνονται τα βήματα της ανάλυσης τάσεων, ανάλυσης αστοχίας και υποβάθμιση των ιδιοτήτων των στοιχείων. Η χρησιμότητα της έγκειται στην πρόβλεψη της έναρξης και εξέλιξης της αστοχίας στο δομικό στοιχείο κάτι απαραίτητο για την κατανόηση της μηχανικής συμπεριφοράς. Η ΒΣ έχει ως σκοπό την μεταβολή συγκεκριμένων γεωμετρικών παραμέτρων για να επιτευχθεί ελαχιστοποίηση των κρίσιμών τάσεων που προκύπτουν από τα αποτελέσματα της ΠΕΒ και οδηγούν στην αστοχία του στοιχείου. Παράλληλα, για την μοντελοποίηση και τον υπολογισμό των μηχανικών ιδιοτήτων πρωτότυπων πλεγμένων σύνθετων υλικών προτείνεται καινούργια μια μεθοδολογία η οποία λαμβάνει υπ’ όψιν την υψηλή ανομοιογένεια των υλικών στην μικρό-κλίμακα για να υπολογίσει τις ιδιότητες τους. Η μεθοδολογία εφαρμόστηκε σε ένα νέο συνδετικό στοιχείο σχήματος H κατασκευασμένο από δύο διαφορετικά πλεγμένα σύνθετα υλικά, τα μη πτυχωτά και τα τρισδιάστατα πλεγμένα σύνθετα υλικά, για την περίπτωση του εφελκυσμού. Σκοπός του συνδέσμου είναι η ένωση δύο πλακών από σύνθετα υλικά χρησιμοποιώντας κόλλα. Αρχικά το μοντέλο πεπερασμένων στοιχείων του συνδέσμου δημιουργείται και επιλύεται με την μέθοδο ΠΕΒ. Για την προσομοίωση της μη-γραμμικής συμπεριφοράς της κόλλας αναπτύσσεται ένα δι-γραμμικό μοντέλο. Για την προσομοίωση της πλήρης μηχανικής συμπεριφοράς των μη πτυχωτών και τρισδιάστατα πλεγμένων συνθέτων υλικών, αναπτύσσεται μια διαδικασία η οποία περιλαμβάνει τα βήματα της γεωμετρικής μοντελοποίησης, της κατασκευής του μοντέλου πεπερασμένων στοιχειών και την επίλυση αυτού με την μέθοδο ΠΕΒ. Τα αποτελέσματα, σε όρους διαγραμμάτων τάσεων-παραμορφώσεων, χρησιμοποιούνται ως δεδομένα στο μοντέλο πεπερασμένων στοιχείων του συνδέσμου το οποίο επιλύεται και υπολογίζεται το διάγραμμα δύναμης-μετατόπισης. Στην συνέχεια, λαμβάνει μέρος η γεωμετρική βελτιστοποίηση βασιζόμενη στα αποτελέσματα της επίλυσης της αρχικής γεωμετρίας. Σε αυτό το σημείο επιλέγεται η μεταβλητή προς ελαχιστοποίηση στην διαδικασία της βελτιστοποίησης. Το μέγεθος αυτό ονομάζεται Συνάρτηση Σκοπού (ΣΣ) και ορίζεται ως ο συντελεστή βλάβης που ευθύνεται για την τελική αστοχία του δομικού στοιχείου. Ως ένα επιπλέον κριτήριο για την επιλογή της βέλτιστης γεωμετρίας επιλέγεται η μείωση βάρους δεδομένου ότι πρόκειται για αεροπορική κατασκευή. Η γεωμετρία που ελαχιστοποιεί την συνάρτηση σκοπού και ταυτόχρονα είναι ελαφρύτερη από την αρχική, επιλέγεται ως η τελική γεωμετρία. Τέλος, γίνεται η επιτυχής επικύρωση της βελτιστοποίησης με την σύγκριση των αριθμητικών αποτελεσμάτων μεταξύ της αρχικής και τελικής γεωμετρίας. Η μεθοδολογία της ΠΕΒ εφαρμόζεται στην τελική γεωμετρία και τα διαγράμματα δύναμης μετατόπισης συγκρίνονται για να διαπιστωθεί η αύξηση στο μέγιστο φορτίο που μπορεί να φέρει το συνδετικό στοιχείο πριν την τελική αστοχία. 2015-09-18T10:55:19Z 2015-09-18T10:55:19Z 2015-05-14 Thesis http://hdl.handle.net/10889/8821 en Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. 0 application/pdf |