q-Γάμμα συναρτήσεις

Η συνάρτηση Γάμμα του Euler είναι μία από τις πλέον βασικές ειδικές συναρτήσεις, όχι μόνον της ανάλυσης αλλά και της μαθηματικής φυσικής. Η συνεχής έρευνα στην περιοχή των μαθηματικών και της φυσικής, δημιούργησε την ανάγκη επέκτασης της συνάρτησης Γάμμα. Μία από τις επεκτάσεις είναι η q-Γάμμα συνάρ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Παπαδήμα, Νίκη
Άλλοι συγγραφείς: Κοκολογιαννάκη, Χρυσή
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2015
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/8846
id nemertes-10889-8846
record_format dspace
spelling nemertes-10889-88462022-09-05T11:16:42Z q-Γάμμα συναρτήσεις Παπαδήμα, Νίκη Κοκολογιαννάκη, Χρυσή Παπαγεωργίου, Βασίλειος Κοντολάτου, Αγγελική Papadima, Niki Γάμμα συνάρτηση Βήτα συνάρτηση q-Gamma function q-Beta function 515.52 Η συνάρτηση Γάμμα του Euler είναι μία από τις πλέον βασικές ειδικές συναρτήσεις, όχι μόνον της ανάλυσης αλλά και της μαθηματικής φυσικής. Η συνεχής έρευνα στην περιοχή των μαθηματικών και της φυσικής, δημιούργησε την ανάγκη επέκτασης της συνάρτησης Γάμμα. Μία από τις επεκτάσεις είναι η q-Γάμμα συνάρτηση, η οποία έγινε με την εισαγωγή του q-λογισμού. Στην εργασία αυτή, συγκεντρώνονται και καταγράφονται οι ιδιότητες της q-Γάμμα συνάρτησης, καθώς και ανισότητες, που ικανοποιούν οι συναρτήσεις αυτές και σχετικές με αυτές συναρτήσεις, οι οποίες προκύπτουν, κυρίως, από ιδιότητες μονοτονίας αυτών. Στο πρώτο κεφάλαιο της εργασίας αναφέρονται οι γνωστές ιδιότητες της συνάρτησης Γάμμα. Στο δεύτερο κεφάλαιο παρουσιάζονται τα βασικά απαραίτητα στοιχεία του q λογισμού. Στο τρίτο κεφάλαιο ορίζονται οι συναρτήσεις q-Γάμμα, q-Βήτα και q-ψ(x) καθώς και γίνεται αναφορά στις ιδιότητες που ισχύουν για αυτές. Στο τέταρτο κεφάλαιο αναφέρονται ιδιότητες μονοτονίας συναρτήσεων που περιέχουν q-Γάμμα συναρτήσεις καθώς και ανισότητες που ικανοποιούν οι συναρτήσεις αυτές. Τα αποτελέσματα, που καταγράφονται , είναι συγκεντρωμένα από επιστημονικές εργασίες, που έχουν δημοσιευτεί, σχετικές με τις q-Γάμμα συναρτήσεις και πολλά εξ αυτών είναι γενικεύσεις ανάλογων αποτελεσμάτων που αφορούν σε Γάμμα συναρτήσεις. Euler's Gamma function is one of the most basic special functions, not only in analysis but also in mathematical physics. The ongoing research in the area of mathematics and physics, created the need to extend the gamma function. One of the extensions is the q-gamma function, which was a result of the introduction of q-calculus. In this paper, have been collected and recorded monotonicity properties and inequalities of functions involving q-gamma function. The first chapter lists the known properties of the gamma function. The second chapter presents the basic elements required of q calculus. The third chapter defines the q-gamma functions, q-Beta and q-ψ(x) and a reference is made to the properties that apply to them. In the fourth chapter are presented properties of the monotonicity of functions that contain q-gamma functions and inequalities that these functions satisfy. The results, recorded, are assembled from papers that have been published, related to the q-gamma functions and many of these generalize results related to gamma functions 2015-10-01T06:46:57Z 2015-10-01T06:46:57Z 2015-07-02 Thesis http://hdl.handle.net/10889/8846 gr 0 application/pdf
institution UPatras
collection Nemertes
language Greek
topic Γάμμα συνάρτηση
Βήτα συνάρτηση
q-Gamma function
q-Beta function
515.52
spellingShingle Γάμμα συνάρτηση
Βήτα συνάρτηση
q-Gamma function
q-Beta function
515.52
Παπαδήμα, Νίκη
q-Γάμμα συναρτήσεις
description Η συνάρτηση Γάμμα του Euler είναι μία από τις πλέον βασικές ειδικές συναρτήσεις, όχι μόνον της ανάλυσης αλλά και της μαθηματικής φυσικής. Η συνεχής έρευνα στην περιοχή των μαθηματικών και της φυσικής, δημιούργησε την ανάγκη επέκτασης της συνάρτησης Γάμμα. Μία από τις επεκτάσεις είναι η q-Γάμμα συνάρτηση, η οποία έγινε με την εισαγωγή του q-λογισμού. Στην εργασία αυτή, συγκεντρώνονται και καταγράφονται οι ιδιότητες της q-Γάμμα συνάρτησης, καθώς και ανισότητες, που ικανοποιούν οι συναρτήσεις αυτές και σχετικές με αυτές συναρτήσεις, οι οποίες προκύπτουν, κυρίως, από ιδιότητες μονοτονίας αυτών. Στο πρώτο κεφάλαιο της εργασίας αναφέρονται οι γνωστές ιδιότητες της συνάρτησης Γάμμα. Στο δεύτερο κεφάλαιο παρουσιάζονται τα βασικά απαραίτητα στοιχεία του q λογισμού. Στο τρίτο κεφάλαιο ορίζονται οι συναρτήσεις q-Γάμμα, q-Βήτα και q-ψ(x) καθώς και γίνεται αναφορά στις ιδιότητες που ισχύουν για αυτές. Στο τέταρτο κεφάλαιο αναφέρονται ιδιότητες μονοτονίας συναρτήσεων που περιέχουν q-Γάμμα συναρτήσεις καθώς και ανισότητες που ικανοποιούν οι συναρτήσεις αυτές. Τα αποτελέσματα, που καταγράφονται , είναι συγκεντρωμένα από επιστημονικές εργασίες, που έχουν δημοσιευτεί, σχετικές με τις q-Γάμμα συναρτήσεις και πολλά εξ αυτών είναι γενικεύσεις ανάλογων αποτελεσμάτων που αφορούν σε Γάμμα συναρτήσεις.
author2 Κοκολογιαννάκη, Χρυσή
author_facet Κοκολογιαννάκη, Χρυσή
Παπαδήμα, Νίκη
format Thesis
author Παπαδήμα, Νίκη
author_sort Παπαδήμα, Νίκη
title q-Γάμμα συναρτήσεις
title_short q-Γάμμα συναρτήσεις
title_full q-Γάμμα συναρτήσεις
title_fullStr q-Γάμμα συναρτήσεις
title_full_unstemmed q-Γάμμα συναρτήσεις
title_sort q-γάμμα συναρτήσεις
publishDate 2015
url http://hdl.handle.net/10889/8846
work_keys_str_mv AT papadēmanikē qgammasynartēseis
_version_ 1771297211481587712