Στέρεες κινήσεις και ισομετρίες υπερεπιφανειών του Rn+1

Η εργασία την οποία διαπραγματεύομαι αποτελείται από δύο ενότητες : Α. Τη στερεά κίνηση σωμάτων και Β. Την ισομετρία δύο n- επιφανειών. Στην Α ενότητα δίνεται ο ορισμός της στερεάς κίνησης και τέσσερα γνωστά παραδείγματα αυτής. Ακολουθεί το θεώρημα που αποδεικνύει ότι η στερεά κίνηση είναι η σύνθε...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Παναγοπούλου, Αικατερίνη
Άλλοι συγγραφείς: Κοτσιώλης, Αθανάσιος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2008
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/887
Περιγραφή
Περίληψη:Η εργασία την οποία διαπραγματεύομαι αποτελείται από δύο ενότητες : Α. Τη στερεά κίνηση σωμάτων και Β. Την ισομετρία δύο n- επιφανειών. Στην Α ενότητα δίνεται ο ορισμός της στερεάς κίνησης και τέσσερα γνωστά παραδείγματα αυτής. Ακολουθεί το θεώρημα που αποδεικνύει ότι η στερεά κίνηση είναι η σύνθεση ενός μοναδικού ορθογώνιου μετασχηματισμού με μια μοναδική μεταφορά και το πόρισμα αυτού, με σημαντικότερη την απόδειξη ότι το διαφορικό μιας στερεάς κίνησης διατηρεί το εσωτερικό γινόμενο. Δίνεται επίσης ο ορισμός των ισοδύναμων n- επιφανειών καθώς και η απόδειξη της σχέσης που συνδέει τις δεύτερες θεμελιώδεις μορφές αυτών των n- επιφανειών. Τέλος αποδεικνύονται 12 ιδιότητες που αφορούν δύο ισοδύναμες n- επιφάνειες. Στην Β ενότητα γίνεται μελέτη εννοιών που αφορούν την εσωτερική γεωμετρία μιας n- επιφάνειας και δίνεται ο ορισμός της ισομετρίας δύο n-επιφανειών. Ακολουθούν τέσσερα ενδιαφέροντα παραδείγματα ισομετρικών επιφανειών. Στη συνέχεια δίνεται η έννοια της συναλλοίωτης διαφόρισης και οι ιδιότητές της. Τέλος, αποδεικνύεται ότι η συναλλοίωτη διαφόριση και η παράλληλη μεταφορά είναι εσωτερικές πράξεις της n- επιφάνειας και η Gauss-Kronecker καμπυλότητα αποτελεί εσωτερική ποσότητα μιας n- επιφάνειας για n- άρτιο.