Ανάλυση σε κύριες συνιστώσες και παραγοντική ανάλυση

Η ανάλυση πολυμεταβλητών δεδομένων καθίσταται ιδιαίτερα δύσκολη όταν το πλήθος των μεταβλητών, p (διάσταση των δεδομένων), είναι μεγάλο. Επίσης δυσκολία υπάρχει στην ανάλυση, όταν οι μεταβλητές είναι υψηλά συσχετισμένες μεταξύ τους. Η ανάλυση κύριων συνιστωσών είναι πολυμεταβλητή στατι...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Γκίτσης, Σπυρίδων
Άλλοι συγγραφείς: Αλεβίζος, Φίλιππος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2008
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/901
Περιγραφή
Περίληψη:Η ανάλυση πολυμεταβλητών δεδομένων καθίσταται ιδιαίτερα δύσκολη όταν το πλήθος των μεταβλητών, p (διάσταση των δεδομένων), είναι μεγάλο. Επίσης δυσκολία υπάρχει στην ανάλυση, όταν οι μεταβλητές είναι υψηλά συσχετισμένες μεταξύ τους. Η ανάλυση κύριων συνιστωσών είναι πολυμεταβλητή στατιστική τεχνική που ασχολείται με την δομή διασπορών – συνδιασπορών, μέσω μερικών γραμμικών συνδυασμών των αρχικών μεταβλητών. Γενικότερα τα αντικείμενα της είναι (1) η μείωση των δεδομένων και (2) η ανάλυση (ερμηνεία) τους. Παρόλο που απαιτούνται p μεταβλητές για να ερμηνευτεί η συνολική μεταβλητότητα του συστήματος, συχνά, η περισσότερη από αυτή τη μεταβλητότητα μπορεί να ερμηνευτεί από ένα μικρό αριθμό k κύριων συνιστωσών. Αν πράγματι συμβεί αυτό, τότε, υπάρχει (σχεδόν) τόση πληροφορία στις k συνιστώσες, όση υπάρχει στις p αρχικές μεταβλητές. Οι k κύριες συνιστώσες μπορούν τότε να αντικαταστήσουν τις αρχικές p μεταβλητές, και το αρχικό σύνολο δεδομένων που αποτελείται από n μετρήσεις των p μεταβλητών, μειώνεται σε ένα σύνολο δεδομένων που αποτελείται από n μετρήσεις των k μεταβλητών. Οι k κύριες συνιστώσες είναι γραμμικός συνδυασμός των p αρχικών μεταβλητών, και μάλιστα είναι ασυσχέτιστες μεταξύ τους. Έτσι, οδηγούμαστε από ένα σύνολο p συσχετισμένων μεταβλητών, σ’ ένα μικρότερο σύνολο k ασυσχέτιστων μεταβλητών. Η μείωση αυτή των δεδομένων είναι πολύ σημαντικό γεγονός, διότι αντί να αναλύουμε δεδομένα στο R p , αναλύουμε δεδομένα στο R k . Σε ορισμένες περιπτώσεις το k, η νέα διάσταση, είναι 2 ή 3 και τότε έχουμε μια οπτική ιδέα, μια εικόνα των δεδομένων. Κλείνοντας την εισαγωγή, θα πρέπει να αναφέρουμε ότι η τεχνική κύριων συνιστωσών δεν επιτυγχάνει πάντοτε την μείωση της διάστασης, π.χ., αυτό συμβαίνει όταν οι αρχικές μεταβλητές είναι ασυσχέτιστες. Τότε θα πρέπει να αναζητηθούν άλλες μέθοδοι μείωσης της διάστασης.