Περίληψη: | Σε προβλήματα ερμηνείας βιολογικών δεδομένων όπου οι υπό μελέτη μονάδες εμφανίζονται κατά συστάδες (cluster) τυχαίου μεγέθους και πλήθους, ιδιαίτερο ρόλο παίζουν οι επιγενείς κατανομές. Συγκεκριμένα ως επιγενής Poisson κατανομή μπορεί να παρασταθεί κάθε μονοδιάστατη διακριτή κατανομή η οποία είναι άπειρα διαιρετή. Έχει μελετηθεί, η περίπτωση στην οποία η κατανομή του μεγέθους της συστάδας (csd) είναι μια γενικευμένη (εισάγεται νέα παράμετρος) εξαρτώμενη μεγέθους (gsb) λογαριθμική κατανομή. Παίρνοντας τα όρια αυτής της παραμέτρου ως οριακές κατανομές προκύπτουν η ΝΝΒD και η Pόlya-Aeppli.
Στη παρούσα διπλωματική μελετάται η κατανομή που προκύπτει όταν ως csd χρησιμοποιείται η gsb μιας οιασδήποτε κατανομής. Δίνεται η πιθανογεννήτρια και προσδιορίζονται οι ασυμπτωτικές κατανομές στη γενικότερη περίπτωση. Μελετώνται επίσης, οι ιδιότητες της κατανομής και δίνονται εκτιμητές με τις μεθόδους των ροπών και της μέγιστης πιθανοφάνειας. Ειδικότερα, παρουσιάζεται η περίπτωση της ακρότμητης Poisson που δίνει ως οριακές κατανομές τις Νeyman και Thomas και προσομοιώνονται δεδομένα. Εξάγονται επίσης, ως ειδική περίπτωση των γενικών τύπων, τα αποτελέσματα που έχουν αποδειχθεί για τη λογαριθμική κατανομή. Στη συνέχεια αναπτύσσονται αντίστοιχα γενικευμένα διδιάστατα μοντέλα τέτοιων κατανομών. Δίνονται επίσης οι περιθώριες και οι δεσμευμένες κατανομές τους, υπολογίζονται οι ροπές, και χρήσιμες σχέσεις για τα διδιάστατα μοντέλα. Τέλος, παρουσιάζονται ειδικές περιπτώσεις, όπως οι Sum-Symmetric Power-Series και δίνονται εφαρμογές των διδιαστάτων κατανομών που μελετήθηκαν.
|