Μελέτη κατανομών μεγέθους συστάδας για επιγενή Poisson και συναφείς ασυμπτωτικές κατανομές
Σε προβλήματα ερμηνείας βιολογικών δεδομένων όπου οι υπό μελέτη μονάδες εμφανίζονται κατά συστάδες (cluster) τυχαίου μεγέθους και πλήθους, ιδιαίτερο ρόλο παίζουν οι επιγενείς κατανομές. Συγκεκριμένα ως επιγενής Poisson κατανομή μπορεί να παρασταθεί κάθε μονοδιάστατη διακριτή κατανομή η οποία είναι ά...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Working Paper |
Γλώσσα: | Greek |
Έκδοση: |
2008
|
Θέματα: | |
Διαθέσιμο Online: | http://nemertes.lis.upatras.gr/jspui/handle/10889/976 |
id |
nemertes-10889-976 |
---|---|
record_format |
dspace |
institution |
UPatras |
collection |
Nemertes |
language |
Greek |
topic |
Σταθμισμένη Επιγενής Ακρότμητη Κατανομή μεγέθους συστάδας Weighted Generalized Truncated Cluster size distribution 519.24 |
spellingShingle |
Σταθμισμένη Επιγενής Ακρότμητη Κατανομή μεγέθους συστάδας Weighted Generalized Truncated Cluster size distribution 519.24 Κουσίδης, Σωκράτης Μελέτη κατανομών μεγέθους συστάδας για επιγενή Poisson και συναφείς ασυμπτωτικές κατανομές |
description |
Σε προβλήματα ερμηνείας βιολογικών δεδομένων όπου οι υπό μελέτη μονάδες εμφανίζονται κατά συστάδες (cluster) τυχαίου μεγέθους και πλήθους, ιδιαίτερο ρόλο παίζουν οι επιγενείς κατανομές. Συγκεκριμένα ως επιγενής Poisson κατανομή μπορεί να παρασταθεί κάθε μονοδιάστατη διακριτή κατανομή η οποία είναι άπειρα διαιρετή. Έχει μελετηθεί, η περίπτωση στην οποία η κατανομή του μεγέθους της συστάδας (csd) είναι μια γενικευμένη (εισάγεται νέα παράμετρος) εξαρτώμενη μεγέθους (gsb) λογαριθμική κατανομή. Παίρνοντας τα όρια αυτής της παραμέτρου ως οριακές κατανομές προκύπτουν η ΝΝΒD και η Pόlya-Aeppli.
Στη παρούσα διπλωματική μελετάται η κατανομή που προκύπτει όταν ως csd χρησιμοποιείται η gsb μιας οιασδήποτε κατανομής. Δίνεται η πιθανογεννήτρια και προσδιορίζονται οι ασυμπτωτικές κατανομές στη γενικότερη περίπτωση. Μελετώνται επίσης, οι ιδιότητες της κατανομής και δίνονται εκτιμητές με τις μεθόδους των ροπών και της μέγιστης πιθανοφάνειας. Ειδικότερα, παρουσιάζεται η περίπτωση της ακρότμητης Poisson που δίνει ως οριακές κατανομές τις Νeyman και Thomas και προσομοιώνονται δεδομένα. Εξάγονται επίσης, ως ειδική περίπτωση των γενικών τύπων, τα αποτελέσματα που έχουν αποδειχθεί για τη λογαριθμική κατανομή. Στη συνέχεια αναπτύσσονται αντίστοιχα γενικευμένα διδιάστατα μοντέλα τέτοιων κατανομών. Δίνονται επίσης οι περιθώριες και οι δεσμευμένες κατανομές τους, υπολογίζονται οι ροπές, και χρήσιμες σχέσεις για τα διδιάστατα μοντέλα. Τέλος, παρουσιάζονται ειδικές περιπτώσεις, όπως οι Sum-Symmetric Power-Series και δίνονται εφαρμογές των διδιαστάτων κατανομών που μελετήθηκαν. |
author2 |
Πιπερίγκου, Βιολέττα |
author_facet |
Πιπερίγκου, Βιολέττα Κουσίδης, Σωκράτης |
format |
Working Paper |
author |
Κουσίδης, Σωκράτης |
author_sort |
Κουσίδης, Σωκράτης |
title |
Μελέτη κατανομών μεγέθους συστάδας για επιγενή Poisson και συναφείς ασυμπτωτικές κατανομές |
title_short |
Μελέτη κατανομών μεγέθους συστάδας για επιγενή Poisson και συναφείς ασυμπτωτικές κατανομές |
title_full |
Μελέτη κατανομών μεγέθους συστάδας για επιγενή Poisson και συναφείς ασυμπτωτικές κατανομές |
title_fullStr |
Μελέτη κατανομών μεγέθους συστάδας για επιγενή Poisson και συναφείς ασυμπτωτικές κατανομές |
title_full_unstemmed |
Μελέτη κατανομών μεγέθους συστάδας για επιγενή Poisson και συναφείς ασυμπτωτικές κατανομές |
title_sort |
μελέτη κατανομών μεγέθους συστάδας για επιγενή poisson και συναφείς ασυμπτωτικές κατανομές |
publishDate |
2008 |
url |
http://nemertes.lis.upatras.gr/jspui/handle/10889/976 |
work_keys_str_mv |
AT kousidēssōkratēs meletēkatanomōnmegethoussystadasgiaepigenēpoissonkaisynapheisasymptōtikeskatanomes |
_version_ |
1771297225336422400 |
spelling |
nemertes-10889-9762022-09-05T13:59:03Z Μελέτη κατανομών μεγέθους συστάδας για επιγενή Poisson και συναφείς ασυμπτωτικές κατανομές Κουσίδης, Σωκράτης Πιπερίγκου, Βιολέττα Κουρούκλης, Σταύρος Τσάντας, Νικόλαος Πιπερίγκου, Βιολέττα Kousidis, Socrates Σταθμισμένη Επιγενής Ακρότμητη Κατανομή μεγέθους συστάδας Weighted Generalized Truncated Cluster size distribution 519.24 Σε προβλήματα ερμηνείας βιολογικών δεδομένων όπου οι υπό μελέτη μονάδες εμφανίζονται κατά συστάδες (cluster) τυχαίου μεγέθους και πλήθους, ιδιαίτερο ρόλο παίζουν οι επιγενείς κατανομές. Συγκεκριμένα ως επιγενής Poisson κατανομή μπορεί να παρασταθεί κάθε μονοδιάστατη διακριτή κατανομή η οποία είναι άπειρα διαιρετή. Έχει μελετηθεί, η περίπτωση στην οποία η κατανομή του μεγέθους της συστάδας (csd) είναι μια γενικευμένη (εισάγεται νέα παράμετρος) εξαρτώμενη μεγέθους (gsb) λογαριθμική κατανομή. Παίρνοντας τα όρια αυτής της παραμέτρου ως οριακές κατανομές προκύπτουν η ΝΝΒD και η Pόlya-Aeppli. Στη παρούσα διπλωματική μελετάται η κατανομή που προκύπτει όταν ως csd χρησιμοποιείται η gsb μιας οιασδήποτε κατανομής. Δίνεται η πιθανογεννήτρια και προσδιορίζονται οι ασυμπτωτικές κατανομές στη γενικότερη περίπτωση. Μελετώνται επίσης, οι ιδιότητες της κατανομής και δίνονται εκτιμητές με τις μεθόδους των ροπών και της μέγιστης πιθανοφάνειας. Ειδικότερα, παρουσιάζεται η περίπτωση της ακρότμητης Poisson που δίνει ως οριακές κατανομές τις Νeyman και Thomas και προσομοιώνονται δεδομένα. Εξάγονται επίσης, ως ειδική περίπτωση των γενικών τύπων, τα αποτελέσματα που έχουν αποδειχθεί για τη λογαριθμική κατανομή. Στη συνέχεια αναπτύσσονται αντίστοιχα γενικευμένα διδιάστατα μοντέλα τέτοιων κατανομών. Δίνονται επίσης οι περιθώριες και οι δεσμευμένες κατανομές τους, υπολογίζονται οι ροπές, και χρήσιμες σχέσεις για τα διδιάστατα μοντέλα. Τέλος, παρουσιάζονται ειδικές περιπτώσεις, όπως οι Sum-Symmetric Power-Series και δίνονται εφαρμογές των διδιαστάτων κατανομών που μελετήθηκαν. In biological data interpretation domains, where the units we exam come along as clusters of random size and number, generalized distributions have a very major role. In particular, every univariate discrete distribution that is infinite divisible can be formed like a generalized Poisson distribution. The case where the cluster-size distribution is a generalized (a new parameter has been inserted) size-biased log-series distribution has been studied. Taking the limits of this parameter, as limited cases we have the NNBD and Polya-Aeppli distribution. In this diplomatic work, we study the distribution which arises when as a csd we use the gsb of a random distribution. We give the pgf and we see the asymptotic distributions in the general case. We also see the attributes of the distribution and we give estimators with the method of moments and maximum likelihood estimators. Specially, we report the case of Truncated Poisson, which gives Neyman and Thomas as limiting cases and we simulate some data. Likewise, we also see the results that have been proofed for the Log-Series distribution as a special case of the general formulas. Then, we see correspond generalized Bivariate models of these distributions. We also give the marginals and the conditional distributions, we find the moments and some useful relations about the Bivariate models. Final, we present special cases, like Sum-Symmetric Power-Series and we give applications of the Bivariate distributions that we saw. In biological data interpretation domains, where the units we exam come along as clusters of random size and number, generalized distributions have a very major role. In particular, every univariate discrete distribution that is infinite divisible can be formed like a generalized Poisson distribution. The case where the cluster-size distribution is a generalized (a new parameter has been inserted) size-biased log-series distribution has been studied. Taking the limits of this parameter, as limited cases we have the NNBD and Polya-Aeppli distribution. In this diplomatic work, we study the distribution which arises when as a csd we use the gsb of a random distribution. We give the pgf and we see the asymptotic distributions in the general case. We also see the attributes of the distribution and we give estimators with the method of moments and maximum likelihood estimators. Specially, we report the case of Truncated Poisson, which gives Neyman and Thomas as limiting cases and we simulate some data. Likewise, we also see the results that have been proofed for the Log-Series distribution as a special case of the general formulas. Then, we see correspond generalized Bivariate models of these distributions. We also give the marginals and the conditional distributions, we find the moments and some useful relations about the Bivariate models. Final, we present special cases, like Sum-Symmetric Power-Series and we give applications of the Bivariate distributions that we saw. 2008-10-09T08:35:53Z 2008-10-09T08:35:53Z 2008-02-20 2008-10-09T08:35:53Z Working Paper http://nemertes.lis.upatras.gr/jspui/handle/10889/976 gr Η ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. 0 application/pdf |