1006861.pdf

This open access work presents selected results from the European research and innovation project IMPROVE which yielded novel data-based solutions to enhance machine reliability and efficiency in the fields of simulation and optimization, condition monitoring, alarm management, and quality predictio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:English
Έκδοση: Springer Nature 2020
Διαθέσιμο Online:https://www.springer.com/9783662578056
id oapen-20.500.12657-23294
record_format dspace
spelling oapen-20.500.12657-232942024-03-22T19:23:41Z IMPROVE - Innovative Modelling Approaches for Production Systems to Raise Validatable Efficiency Niggemann, Oliver Schüller, Peter Engineering Quality control Reliability Industrial safety Robotics Automation Input-output equipment (Computers) thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materials::TGP Production and industrial engineering::TGPR Reliability engineering thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TJ Electronics and communications engineering::TJF Electronics engineering::TJFM Automatic control engineering::TJFM1 Robotics thema EDItEUR::U Computing and Information Technology::UT Computer networking and communications This open access work presents selected results from the European research and innovation project IMPROVE which yielded novel data-based solutions to enhance machine reliability and efficiency in the fields of simulation and optimization, condition monitoring, alarm management, and quality prediction. 2020-03-18 13:36:15 2020-04-01T09:10:30Z 2020-04-01T09:10:30Z 2018 book 1006861 http://library.oapen.org/handle/20.500.12657/23294 eng Technologien für die intelligente Automation application/pdf n/a 1006861.pdf https://www.springer.com/9783662578056 Springer Nature 10.1007/978-3-662-57805-6 10.1007/978-3-662-57805-6 6c6992af-b843-4f46-859c-f6e9998e40d5 129 Berlin, Heidelberg open access
institution OAPEN
collection DSpace
language English
description This open access work presents selected results from the European research and innovation project IMPROVE which yielded novel data-based solutions to enhance machine reliability and efficiency in the fields of simulation and optimization, condition monitoring, alarm management, and quality prediction.
title 1006861.pdf
spellingShingle 1006861.pdf
title_short 1006861.pdf
title_full 1006861.pdf
title_fullStr 1006861.pdf
title_full_unstemmed 1006861.pdf
title_sort 1006861.pdf
publisher Springer Nature
publishDate 2020
url https://www.springer.com/9783662578056
_version_ 1799945309014458368