72819.pdf

Industrial performance optimization increasingly makes the use of various analytical data-driven models. In this context, modern machine learning capabilities to predict future production quality outcomes, model predictive control to better account for complex multivariable environments of process i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:English
Έκδοση: InTechOpen 2021
Περιγραφή
Περίληψη:Industrial performance optimization increasingly makes the use of various analytical data-driven models. In this context, modern machine learning capabilities to predict future production quality outcomes, model predictive control to better account for complex multivariable environments of process industry, Bayesian Networks enabling improved decision support systems for diagnostics and fault detection are some of the main examples to be named. The key challenge is to integrate these highly heterogeneous models in a holistic system, which would also be suitable for applications from the most different industries. Core elements of the underlying solution architecture constitute highly decoupled model microservices, ensuring the creation of largely customizable model runtime environments. Deployment of isolated user-space instances, called containers, further extends the overall possibilities to integrate heterogeneous models. Strong requirements on high availability, scalability, and security are satisfied through the application of cloud-based services. Tieto successfully applied the outlined approach during the participation in FUture DIrections for Process industry Optimization (FUDIPO), a project funded by the European Commission under the H2020 program, SPIRE-02-2016.