external_content.pdf

Physiological rhythms are central to life. Mammalian behavior and metabolism are organized around the day and night by the regulated action of cell-autonomous clocks that exist throughout our bodies. At the core of this molecular clockwork are multiple coupled feedback loops that generate sustained...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:English
Έκδοση: Logos Verlag 2022
id oapen-20.500.12657-54146
record_format dspace
spelling oapen-20.500.12657-541462023-01-31T18:36:18Z Searching for Order in Body Clocks Olmo, Marta del Health & Fitness Sleep bic Book Industry Communication::V Health & personal development::VF Family & health::VFJ Coping with personal problems Physiological rhythms are central to life. Mammalian behavior and metabolism are organized around the day and night by the regulated action of cell-autonomous clocks that exist throughout our bodies. At the core of this molecular clockwork are multiple coupled feedback loops that generate sustained circadian rhythms in gene expression to ultimately orchestrate mammalian physiology. In this work we provide evidence for the role of metabolism in regulating the core clock. We present genes involved in energetic and redox pathways which we identified to be essential for the robustness of cellular timekeepers to temperature fluctuations. We developed the first computational model for circadian redox oscillations that contributes to the understanding of how cellular redox balance might adjust circadian rates in response to perturbations and convey timing information to the core molecular oscillator. Moreover, we show that our mathematical model can be coupled with prior published models of the transcriptional clockwork resulting in 1:1 entrainment. This experimental-theoretical approach exemplifies the need of a dynamic analysis at the system level to understand complex biological processes and provides insights into how basic timekeeping mechanisms are integrated into cellular physiology. Such knowledge might highlight new ways by which functional consequences of circadian timekeeping can be explored in the context of human health and disease. 2022-04-23T05:33:00Z 2022-04-23T05:33:00Z 2021 book 9783832554064 https://library.oapen.org/handle/20.500.12657/54146 eng application/pdf n/a external_content.pdf Logos Verlag https://doi.org/10.30819/5406 https://doi.org/10.30819/5406 Logos Verlag Berlin 9783832554064 Knowledge Unlatched (KU) Logos Verlag open access
institution OAPEN
collection DSpace
language English
description Physiological rhythms are central to life. Mammalian behavior and metabolism are organized around the day and night by the regulated action of cell-autonomous clocks that exist throughout our bodies. At the core of this molecular clockwork are multiple coupled feedback loops that generate sustained circadian rhythms in gene expression to ultimately orchestrate mammalian physiology. In this work we provide evidence for the role of metabolism in regulating the core clock. We present genes involved in energetic and redox pathways which we identified to be essential for the robustness of cellular timekeepers to temperature fluctuations. We developed the first computational model for circadian redox oscillations that contributes to the understanding of how cellular redox balance might adjust circadian rates in response to perturbations and convey timing information to the core molecular oscillator. Moreover, we show that our mathematical model can be coupled with prior published models of the transcriptional clockwork resulting in 1:1 entrainment. This experimental-theoretical approach exemplifies the need of a dynamic analysis at the system level to understand complex biological processes and provides insights into how basic timekeeping mechanisms are integrated into cellular physiology. Such knowledge might highlight new ways by which functional consequences of circadian timekeeping can be explored in the context of human health and disease.
title external_content.pdf
spellingShingle external_content.pdf
title_short external_content.pdf
title_full external_content.pdf
title_fullStr external_content.pdf
title_full_unstemmed external_content.pdf
title_sort external_content.pdf
publisher Logos Verlag
publishDate 2022
_version_ 1771297600569344000