26242.pdf

It is well known that, in classification problems, the predictive capacity of any decision-making model decreases rapidly with increasing asymmetry of the target variable (Sonquist et al., 1973; Fielding 1977). In particular, in segmentation analysis with a categorical target variable, very poor imp...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:English
Έκδοση: Firenze University Press 2022
Διαθέσιμο Online:https://books.fupress.com/doi/capitoli/978-88-5518-461-8_24
id oapen-20.500.12657-56371
record_format dspace
spelling oapen-20.500.12657-563712022-06-02T03:26:14Z Chapter Post-stratification as a tool for enhancing the predictive power of classification methods d'Ovidio, Francesco Domenico D'Uggento, Angela Maria mancarella, rossana TOMA, Ernesto Classification Asymmetry Post-stratification Predictive power It is well known that, in classification problems, the predictive capacity of any decision-making model decreases rapidly with increasing asymmetry of the target variable (Sonquist et al., 1973; Fielding 1977). In particular, in segmentation analysis with a categorical target variable, very poor improvements of purity are obtained when the least represented modality counts less than 1/4 of the cases of the most represented modality. The same problem arises with other (theoretically more exhaustive) techniques such as Artificial Neural Networks. Actually, the optimal situation for classification analyses is the maximum uncertainty, that is, equidistribution of the target variable. Some classification techniques are more robust, by using, for example, the less sensitive logit transformation of the target variable (Fabbris & Martini 2002); however, also the logit transformation is strongly affected by the distributive asymmetry of the target variable. In this paper, starting from the results of a direct survey in which the target (binary) variable was extremely asymmetrical (10% vs. 90%, or greater asymmetry), we noted that also the logit model with the most significant parameters had very reduced fitting measures and almost zero predictive power. To solve this predictive issue, we tested post-stratification techniques, artificially symmetrizing a training sample. In this way, a substantially increase of fitting and predictive capacity was achieved, both in the symmetrized sample and, above all, in the original sample. In conclusion of the paper, an application of the same technique to a dataset of very different nature and size is described, demonstrating that the method is stable even in the case of analysis executed with all data of a population. 2022-06-01T12:20:58Z 2022-06-01T12:20:58Z 2021 chapter ONIX_20220601_9788855184618_556 2704-5846 9788855184618 https://library.oapen.org/handle/20.500.12657/56371 eng Proceedings e report application/pdf Attribution 4.0 International 26242.pdf https://books.fupress.com/doi/capitoli/978-88-5518-461-8_24 Firenze University Press 10.36253/978-88-5518-461-8.24 10.36253/978-88-5518-461-8.24 bf65d21a-78e5-4ba2-983a-dbfa90962870 9788855184618 132 6 Florence open access
institution OAPEN
collection DSpace
language English
description It is well known that, in classification problems, the predictive capacity of any decision-making model decreases rapidly with increasing asymmetry of the target variable (Sonquist et al., 1973; Fielding 1977). In particular, in segmentation analysis with a categorical target variable, very poor improvements of purity are obtained when the least represented modality counts less than 1/4 of the cases of the most represented modality. The same problem arises with other (theoretically more exhaustive) techniques such as Artificial Neural Networks. Actually, the optimal situation for classification analyses is the maximum uncertainty, that is, equidistribution of the target variable. Some classification techniques are more robust, by using, for example, the less sensitive logit transformation of the target variable (Fabbris & Martini 2002); however, also the logit transformation is strongly affected by the distributive asymmetry of the target variable. In this paper, starting from the results of a direct survey in which the target (binary) variable was extremely asymmetrical (10% vs. 90%, or greater asymmetry), we noted that also the logit model with the most significant parameters had very reduced fitting measures and almost zero predictive power. To solve this predictive issue, we tested post-stratification techniques, artificially symmetrizing a training sample. In this way, a substantially increase of fitting and predictive capacity was achieved, both in the symmetrized sample and, above all, in the original sample. In conclusion of the paper, an application of the same technique to a dataset of very different nature and size is described, demonstrating that the method is stable even in the case of analysis executed with all data of a population.
title 26242.pdf
spellingShingle 26242.pdf
title_short 26242.pdf
title_full 26242.pdf
title_fullStr 26242.pdf
title_full_unstemmed 26242.pdf
title_sort 26242.pdf
publisher Firenze University Press
publishDate 2022
url https://books.fupress.com/doi/capitoli/978-88-5518-461-8_24
_version_ 1771297389843316736