external_content.pdf

While binaural technology applications gained in popularity in recent years, the majority of applications still use non-individual Head-Related Transfer Functions (HRTFs) from artificial heads. However, certain applications, for example research of spatial hearing or hearing attention, require an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:English
Έκδοση: Logos Verlag Berlin 2022
id oapen-20.500.12657-56719
record_format dspace
spelling oapen-20.500.12657-567192023-02-01T08:50:33Z Fast Measurement of Individual Head-Related Transfer Functions Richter, Jan-Gerrit Technology & Engineering Electronics Science Physics bic Book Industry Communication::T Technology, engineering, agriculture::TJ Electronics & communications engineering::TJF Electronics engineering bic Book Industry Communication::P Mathematics & science::PH Physics While binaural technology applications gained in popularity in recent years, the majority of applications still use non-individual Head-Related Transfer Functions (HRTFs) from artificial heads. However, certain applications, for example research of spatial hearing or hearing attention, require an physically exact and realistic binaural signal. The limiting factor that prohibits the widespread use of individual HRTFs is the acquisition time of such data. This time requirement has recently been reduced by the use of parallelization in the measurement signal which lead to the development of fast measurement systems capable of acquiring individual and spatially dense HRTF. This thesis provides a objective and subjective evaluation of such a system that is designed with the goal of little disturbance of the measurements in mind. The construction is detailed, followed by both an objective and subjective evaluation. A detailed investigation into additional distortion of the sound field introduced by the system itself is presented and it is shown that the system performs comparably to a conventional system in terms of sound source localization. Furthermore, a method is introduced and evaluated to further reduce the measurement time by using continuous rotation during the measurement. This method is used to reduced the measurement duration from eight minutes to three minutes without audible differences. 2022-06-18T05:31:17Z 2022-06-18T05:31:17Z 2019 book 9783832549060 https://library.oapen.org/handle/20.500.12657/56719 eng application/pdf n/a external_content.pdf Logos Verlag Berlin Logos Verlag Berlin https://doi.org/10.30819/4906 https://doi.org/10.30819/4906 1059eef5-b798-421c-b07f-c6a304d3aec8 b818ba9d-2dd9-4fd7-a364-7f305aef7ee9 9783832549060 Knowledge Unlatched (KU) Logos Verlag Berlin Knowledge Unlatched open access
institution OAPEN
collection DSpace
language English
description While binaural technology applications gained in popularity in recent years, the majority of applications still use non-individual Head-Related Transfer Functions (HRTFs) from artificial heads. However, certain applications, for example research of spatial hearing or hearing attention, require an physically exact and realistic binaural signal. The limiting factor that prohibits the widespread use of individual HRTFs is the acquisition time of such data. This time requirement has recently been reduced by the use of parallelization in the measurement signal which lead to the development of fast measurement systems capable of acquiring individual and spatially dense HRTF. This thesis provides a objective and subjective evaluation of such a system that is designed with the goal of little disturbance of the measurements in mind. The construction is detailed, followed by both an objective and subjective evaluation. A detailed investigation into additional distortion of the sound field introduced by the system itself is presented and it is shown that the system performs comparably to a conventional system in terms of sound source localization. Furthermore, a method is introduced and evaluated to further reduce the measurement time by using continuous rotation during the measurement. This method is used to reduced the measurement duration from eight minutes to three minutes without audible differences.
title external_content.pdf
spellingShingle external_content.pdf
title_short external_content.pdf
title_full external_content.pdf
title_fullStr external_content.pdf
title_full_unstemmed external_content.pdf
title_sort external_content.pdf
publisher Logos Verlag Berlin
publishDate 2022
_version_ 1771297393061396480