9783731511960.pdf

A physically-based dislocation theory of plasticity is derived within an extended continuum mechanical context. Thermodynamically consistent flow rules at the grain boundaries are derived. With an analytical solution of a three-phase periodic laminate, dislocation pile-up at grain boundaries and dis...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:English
Έκδοση: KIT Scientific Publishing 2022
Διαθέσιμο Online:https://doi.org/10.5445/KSP/1000146388
id oapen-20.500.12657-57536
record_format dspace
spelling oapen-20.500.12657-575362022-07-19T03:08:14Z Modeling of Dislocation Erdle, Hannes Gradienten-Kristallplastizität Erweiterte Kontinuumstheorie Kontinuumsversetzungstheorie Korngrenzmodellierung Finite Elemente Methode Gradient Crystal Plasticity Extended Continuum Theory Continuum Dislocation Theory Grain Boundary Modeling Finite Element Method bic Book Industry Communication::T Technology, engineering, agriculture::TG Mechanical engineering & materials A physically-based dislocation theory of plasticity is derived within an extended continuum mechanical context. Thermodynamically consistent flow rules at the grain boundaries are derived. With an analytical solution of a three-phase periodic laminate, dislocation pile-up at grain boundaries and dislocation transmission through the grain boundaries are investigated. For the finite element implementations, numerically efficient approaches are introduced based on accumulated field variables. 2022-07-18T11:55:23Z 2022-07-18T11:55:23Z 2022 book ONIX_20220718_9783731511960_113 2192-693X 9783731511960 https://library.oapen.org/handle/20.500.12657/57536 eng Schriftenreihe Kontinuumsmechanik im Maschinenbau application/pdf n/a 9783731511960.pdf https://doi.org/10.5445/KSP/1000146388 KIT Scientific Publishing KIT Scientific Publishing 10.5445/KSP/1000146388 10.5445/KSP/1000146388 44e29711-8d53-496b-85cc-3d10c9469be9 9783731511960 KIT Scientific Publishing 19 186 Karlsruhe open access
institution OAPEN
collection DSpace
language English
description A physically-based dislocation theory of plasticity is derived within an extended continuum mechanical context. Thermodynamically consistent flow rules at the grain boundaries are derived. With an analytical solution of a three-phase periodic laminate, dislocation pile-up at grain boundaries and dislocation transmission through the grain boundaries are investigated. For the finite element implementations, numerically efficient approaches are introduced based on accumulated field variables.
title 9783731511960.pdf
spellingShingle 9783731511960.pdf
title_short 9783731511960.pdf
title_full 9783731511960.pdf
title_fullStr 9783731511960.pdf
title_full_unstemmed 9783731511960.pdf
title_sort 9783731511960.pdf
publisher KIT Scientific Publishing
publishDate 2022
url https://doi.org/10.5445/KSP/1000146388
_version_ 1771297399071834112