978-3-030-99546-1.pdf

This open access book presents the results of three years collaboration between earth scientists and data scientist, in developing and applying data science methods for scientific discovery. The book will be highly beneficial for other researchers at senior and graduate level, interested in applying...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:English
Έκδοση: Springer Nature 2022
Διαθέσιμο Online:https://link.springer.com/978-3-030-99546-1
id oapen-20.500.12657-57914
record_format dspace
spelling oapen-20.500.12657-579142022-08-18T03:06:57Z Integrating Data Science and Earth Science Bouwer, Laurens M. Dransch, Doris Ruhnke, Roland Rechid, Diana Frickenhaus, Stephan Greinert, Jens Machine learning SMART monitoring Computational data exploration Digital Earth Visual data exploration bic Book Industry Communication::R Earth sciences, geography, environment, planning::RB Earth sciences bic Book Industry Communication::U Computing & information technology::UM Computer programming / software development::UMB Algorithms & data structures bic Book Industry Communication::U Computing & information technology::UY Computer science::UYQ Artificial intelligence bic Book Industry Communication::P Mathematics & science::PB Mathematics::PBT Probability & statistics bic Book Industry Communication::P Mathematics & science::PB Mathematics This open access book presents the results of three years collaboration between earth scientists and data scientist, in developing and applying data science methods for scientific discovery. The book will be highly beneficial for other researchers at senior and graduate level, interested in applying visual data exploration, computational approaches and scientifc workflows. 2022-08-17T20:14:11Z 2022-08-17T20:14:11Z 2022 book ONIX_20220817_9783030995461_14 9783030995461 https://library.oapen.org/handle/20.500.12657/57914 eng SpringerBriefs in Earth System Sciences application/pdf n/a 978-3-030-99546-1.pdf https://link.springer.com/978-3-030-99546-1 Springer Nature Springer 10.1007/978-3-030-99546-1 10.1007/978-3-030-99546-1 6c6992af-b843-4f46-859c-f6e9998e40d5 9af17a1f-e23d-4316-a96b-d0e94bba17e1 9783030995461 Springer 148 Cham [...] Helmholtz Association Helmholtz-Gemeinschaft open access
institution OAPEN
collection DSpace
language English
description This open access book presents the results of three years collaboration between earth scientists and data scientist, in developing and applying data science methods for scientific discovery. The book will be highly beneficial for other researchers at senior and graduate level, interested in applying visual data exploration, computational approaches and scientifc workflows.
title 978-3-030-99546-1.pdf
spellingShingle 978-3-030-99546-1.pdf
title_short 978-3-030-99546-1.pdf
title_full 978-3-030-99546-1.pdf
title_fullStr 978-3-030-99546-1.pdf
title_full_unstemmed 978-3-030-99546-1.pdf
title_sort 978-3-030-99546-1.pdf
publisher Springer Nature
publishDate 2022
url https://link.springer.com/978-3-030-99546-1
_version_ 1771297620237484032