978-981-19-3639-5.pdf

This open access book demonstrates how data quality issues affect all surveys and proposes methods that can be utilised to deal with the observable components of survey error in a statistically sound manner. This book begins by profiling the post-Apartheid period in South Africa's history when...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:English
Έκδοση: Springer Nature 2023
Διαθέσιμο Online:https://link.springer.com/978-981-19-3639-5
id oapen-20.500.12657-61325
record_format dspace
spelling oapen-20.500.12657-613252024-03-27T14:14:29Z How Data Quality Affects our Understanding of the Earnings Distribution Daniels, Reza Che Methodology for Collecting Estimating and Organizing Microeconomic Data Survey Methods Total Survey Error Response Propensity Models Multiple Imputation Income Distribution thema EDItEUR::P Mathematics and Science::PB Mathematics::PBT Probability and statistics thema EDItEUR::K Economics, Finance, Business and Management::KC Economics thema EDItEUR::N History and Archaeology::NH History::NHH African history This open access book demonstrates how data quality issues affect all surveys and proposes methods that can be utilised to deal with the observable components of survey error in a statistically sound manner. This book begins by profiling the post-Apartheid period in South Africa's history when the sampling frame and survey methodology for household surveys was undergoing periodic changes due to the changing geopolitical landscape in the country. This book profiles how different components of error had disproportionate magnitudes in different survey years, including coverage error, sampling error, nonresponse error, measurement error, processing error and adjustment error. The parameters of interest concern the earnings distribution, but despite this outcome of interest, the discussion is generalizable to any question in a random sample survey of households or firms. This book then investigates questionnaire design and item nonresponse by building a response propensity model for the employee income question in two South African labour market surveys: the October Household Survey (OHS, 1997-1999) and the Labour Force Survey (LFS, 2000-2003). This time period isolates a period of changing questionnaire design for the income question. Finally, this book is concerned with how to employee income data with a mixture of continuous data, bounded response data and nonresponse. A variable with this mixture of data types is called coarse data. Because the income question consists of two parts -- an initial, exact income question and a bounded income follow-up question -- the resulting statistical distribution of employee income is both continuous and discrete. The book shows researchers how to appropriately deal with coarse income data using multiple imputation. The take-home message from this book is that researchers have a responsibility to treat data quality concerns in a statistically sound manner, rather than making adjustments to public-use data in arbitrary ways, often underpinned by undefensible assumptions about an implicit unobservable loss function in the data. The demonstration of how this can be done provides a replicable concept map with applicable methods that can be utilised in any sample survey. 2023-02-13T17:28:20Z 2023-02-13T17:28:20Z 2022 book ONIX_20230213_9789811936395_60 9789811936395 https://library.oapen.org/handle/20.500.12657/61325 eng application/pdf n/a 978-981-19-3639-5.pdf https://link.springer.com/978-981-19-3639-5 Springer Nature Springer Nature Singapore 10.1007/978-981-19-3639-5 10.1007/978-981-19-3639-5 6c6992af-b843-4f46-859c-f6e9998e40d5 94ca1040-a907-4251-98bd-2d9a1734557f 9789811936395 Springer Nature Singapore 114 Singapore [...] University of Cape Town Universiteit van Kaapstad open access
institution OAPEN
collection DSpace
language English
description This open access book demonstrates how data quality issues affect all surveys and proposes methods that can be utilised to deal with the observable components of survey error in a statistically sound manner. This book begins by profiling the post-Apartheid period in South Africa's history when the sampling frame and survey methodology for household surveys was undergoing periodic changes due to the changing geopolitical landscape in the country. This book profiles how different components of error had disproportionate magnitudes in different survey years, including coverage error, sampling error, nonresponse error, measurement error, processing error and adjustment error. The parameters of interest concern the earnings distribution, but despite this outcome of interest, the discussion is generalizable to any question in a random sample survey of households or firms. This book then investigates questionnaire design and item nonresponse by building a response propensity model for the employee income question in two South African labour market surveys: the October Household Survey (OHS, 1997-1999) and the Labour Force Survey (LFS, 2000-2003). This time period isolates a period of changing questionnaire design for the income question. Finally, this book is concerned with how to employee income data with a mixture of continuous data, bounded response data and nonresponse. A variable with this mixture of data types is called coarse data. Because the income question consists of two parts -- an initial, exact income question and a bounded income follow-up question -- the resulting statistical distribution of employee income is both continuous and discrete. The book shows researchers how to appropriately deal with coarse income data using multiple imputation. The take-home message from this book is that researchers have a responsibility to treat data quality concerns in a statistically sound manner, rather than making adjustments to public-use data in arbitrary ways, often underpinned by undefensible assumptions about an implicit unobservable loss function in the data. The demonstration of how this can be done provides a replicable concept map with applicable methods that can be utilised in any sample survey.
title 978-981-19-3639-5.pdf
spellingShingle 978-981-19-3639-5.pdf
title_short 978-981-19-3639-5.pdf
title_full 978-981-19-3639-5.pdf
title_fullStr 978-981-19-3639-5.pdf
title_full_unstemmed 978-981-19-3639-5.pdf
title_sort 978-981-19-3639-5.pdf
publisher Springer Nature
publishDate 2023
url https://link.springer.com/978-981-19-3639-5
_version_ 1799945260752699392