spelling |
oapen-20.500.12657-614952024-03-27T14:14:33Z The use of Pseudomonas spp. as bacterial biocontrol agents to control plant diseases Hӧfte, Monica antagonism biological control induced systemic resistance lipopeptide phenazines 2,4-diacetylphloroglucinol siderophores thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TV Agriculture and farming::TVK Agronomy and crop production thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TV Agriculture and farming::TVF Sustainable agriculture thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TV Agriculture and farming::TVP Pest control / plant diseases thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences Most Pseudomonas biocontrol strains are associated with the rhizosphere of plants, where they control soil pathogens by antibiosis or competition, and leaf pathogens via induced systemic resistance. Genome mining and the division of the vastly heterogeneous genus Pseudomonas in phylogenomic (sub)groups has clarified the relation between biocontrol characteristics and phylogeny. Based on their activity, Pseudomonas biocontrol strains come in three types. A first type, represented by P. chlororaphis, P. protegens, P. corrugata and P. aeruginosa (sub)group strains, produces an arsenal of secondary metabolites with broad antimicrobial activity. The second type is found in the P. putida, P. fluorescens, P. koreensis, P. mandelii, and P. gessardii (sub)group. The spectrum of biocontrol properties of these strains is less diverse and involves siderophores and cyclic lipopeptides. The third type colonizes above-ground plant parts. Strains from this type mainly belong to the P. syringae group and are used to control postharvest pathogens. This chapter starts with recent advances in Pseudomonas taxonomy and a summary of its most important biocontrol traits. It then provides an overview of the most important Pseudomonas groups and subgroups harboring biocontrol strains. Examples of well-characterized and representative biocontrol strains show the links between phylogeny, ecology and biocontrol traits. The chapter concludes by reviewing commercially-available biocontrol strains. 2023-02-27T12:21:19Z 2023-02-27T12:21:19Z 2021 chapter ONIX_20230227_9781801460187_16 9781801460187 https://library.oapen.org/handle/20.500.12657/61495 eng Burleigh Dodds Series in Agricultural Science application/pdf Attribution 4.0 International 9781801460187_web.pdf Burleigh Dodds Science Publishing Burleigh Dodds Science Publishing 10.19103/AS.2021.0093.11 10.19103/AS.2021.0093.11 9f8f6c63-e2ae-40b8-8aac-316abb377d6a Universiteit Gent 9781801460187 Burleigh Dodds Science Publishing 74 Cambridge [...] open access
|
description |
Most Pseudomonas biocontrol strains are associated with the rhizosphere of plants, where they control soil pathogens by antibiosis or competition, and leaf pathogens via induced systemic resistance. Genome mining and the division of the vastly heterogeneous genus Pseudomonas in phylogenomic (sub)groups has clarified the relation between biocontrol characteristics and phylogeny. Based on their activity, Pseudomonas biocontrol strains come in three types. A first type, represented by P. chlororaphis, P. protegens, P. corrugata and P. aeruginosa (sub)group strains, produces an arsenal of secondary metabolites with broad antimicrobial activity. The second type is found in the P. putida, P. fluorescens, P. koreensis, P. mandelii, and P. gessardii (sub)group. The spectrum of biocontrol properties of these strains is less diverse and involves siderophores and cyclic lipopeptides. The third type colonizes above-ground plant parts. Strains from this type mainly belong to the P. syringae group and are used to control postharvest pathogens. This chapter starts with recent advances in Pseudomonas taxonomy and a summary of its most important biocontrol traits. It then provides an overview of the most important Pseudomonas groups and subgroups harboring biocontrol strains. Examples of well-characterized and representative biocontrol strains show the links between phylogeny, ecology and biocontrol traits. The chapter concludes by reviewing commercially-available biocontrol strains.
|