a-computational-multi-scale-approach-for-brittle-materials.pdf

Materials of industrial interest often show a complex microstructure which directly influences their macroscopic material behavior. For simulations on the component scale, multi-scale methods may exploit this microstructural information. This work is devoted to a multi-scale approach for brittle mat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:English
Έκδοση: KIT Scientific Publishing 2023
Διαθέσιμο Online:https://doi.org/10.5445/KSP/1000156458
id oapen-20.500.12657-62534
record_format dspace
spelling oapen-20.500.12657-625342024-03-28T08:18:24Z A computational multi-scale approach for brittle materials Ernesti, Felix Effektive Rissenergie; FFT-basierte Homogenisierungsmethoden; Phasenfeld-Bruchmechanik; Minkowski-Tensoren; Fast-Marching-Methoden; Effective crack energy; FFT-based computational homogenization; Phase-field fracture; Minkowski tensors; Fast marching methods thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materials Materials of industrial interest often show a complex microstructure which directly influences their macroscopic material behavior. For simulations on the component scale, multi-scale methods may exploit this microstructural information. This work is devoted to a multi-scale approach for brittle materials. Based on a homogenization result for free discontinuity problems, we present FFT-based methods to compute the effective crack energy of heterogeneous materials with complex microstructures. 2023-04-24T11:16:28Z 2023-04-24T11:16:28Z 2023 book https://library.oapen.org/handle/20.500.12657/62534 eng Schriftenreihe Kontinuumsmechanik im Maschinenbau application/pdf Attribution-ShareAlike 4.0 International a-computational-multi-scale-approach-for-brittle-materials.pdf https://doi.org/10.5445/KSP/1000156458 KIT Scientific Publishing 10.5445/KSP/1000156458 10.5445/KSP/1000156458 44e29711-8d53-496b-85cc-3d10c9469be9 24 264 open access
institution OAPEN
collection DSpace
language English
description Materials of industrial interest often show a complex microstructure which directly influences their macroscopic material behavior. For simulations on the component scale, multi-scale methods may exploit this microstructural information. This work is devoted to a multi-scale approach for brittle materials. Based on a homogenization result for free discontinuity problems, we present FFT-based methods to compute the effective crack energy of heterogeneous materials with complex microstructures.
title a-computational-multi-scale-approach-for-brittle-materials.pdf
spellingShingle a-computational-multi-scale-approach-for-brittle-materials.pdf
title_short a-computational-multi-scale-approach-for-brittle-materials.pdf
title_full a-computational-multi-scale-approach-for-brittle-materials.pdf
title_fullStr a-computational-multi-scale-approach-for-brittle-materials.pdf
title_full_unstemmed a-computational-multi-scale-approach-for-brittle-materials.pdf
title_sort a-computational-multi-scale-approach-for-brittle-materials.pdf
publisher KIT Scientific Publishing
publishDate 2023
url https://doi.org/10.5445/KSP/1000156458
_version_ 1799945194484793344