deep-reinforcement-learning-zur-steigerung-von-energieeffizienz-und-punktlichkeit-von-strassenbahnen.pdf

This work investigates how the energy efficiency and punctuality of streetcars can be increased by using AI. The AI is trained on two scenarios at three traffic times each. The determined driving profiles are compared with those of drivers from regular passenger operation as well as with a theoretic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:German
Έκδοση: KIT Scientific Publishing 2023
Διαθέσιμο Online:https://doi.org/10.5445/KSP/1000155565
id oapen-20.500.12657-62535
record_format dspace
spelling oapen-20.500.12657-625352024-03-28T08:18:25Z Deep Reinforcement Learning zur Steigerung von Energieeffizienz und Pünktlichkeit von Straßenbahnen Tesar, Markus Straßenbahn; KI; Energie; effizienz; Pünktlichkeit; Modellierung; Light Rail; AI; Energy Efficiency; Punctuality; Modelling thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materials This work investigates how the energy efficiency and punctuality of streetcars can be increased by using AI. The AI is trained on two scenarios at three traffic times each. The determined driving profiles are compared with those of drivers from regular passenger operation as well as with a theoretical optimum determined by Dynamic Programming. In addition, transfer learning capabilities of the AI will be investigated. 2023-04-24T11:20:18Z 2023-04-24T11:20:18Z 2023 book https://library.oapen.org/handle/20.500.12657/62535 ger Karlsruher Schriftenreihe Fahrzeugsystemtechnik application/pdf Attribution-ShareAlike 4.0 International deep-reinforcement-learning-zur-steigerung-von-energieeffizienz-und-punktlichkeit-von-strassenbahnen.pdf https://doi.org/10.5445/KSP/1000155565 KIT Scientific Publishing 10.5445/KSP/1000155565 10.5445/KSP/1000155565 44e29711-8d53-496b-85cc-3d10c9469be9 20 280 open access
institution OAPEN
collection DSpace
language German
description This work investigates how the energy efficiency and punctuality of streetcars can be increased by using AI. The AI is trained on two scenarios at three traffic times each. The determined driving profiles are compared with those of drivers from regular passenger operation as well as with a theoretical optimum determined by Dynamic Programming. In addition, transfer learning capabilities of the AI will be investigated.
title deep-reinforcement-learning-zur-steigerung-von-energieeffizienz-und-punktlichkeit-von-strassenbahnen.pdf
spellingShingle deep-reinforcement-learning-zur-steigerung-von-energieeffizienz-und-punktlichkeit-von-strassenbahnen.pdf
title_short deep-reinforcement-learning-zur-steigerung-von-energieeffizienz-und-punktlichkeit-von-strassenbahnen.pdf
title_full deep-reinforcement-learning-zur-steigerung-von-energieeffizienz-und-punktlichkeit-von-strassenbahnen.pdf
title_fullStr deep-reinforcement-learning-zur-steigerung-von-energieeffizienz-und-punktlichkeit-von-strassenbahnen.pdf
title_full_unstemmed deep-reinforcement-learning-zur-steigerung-von-energieeffizienz-und-punktlichkeit-von-strassenbahnen.pdf
title_sort deep-reinforcement-learning-zur-steigerung-von-energieeffizienz-und-punktlichkeit-von-strassenbahnen.pdf
publisher KIT Scientific Publishing
publishDate 2023
url https://doi.org/10.5445/KSP/1000155565
_version_ 1799945306205323264