development-of-a-modular-knowledge-discovery-framework-based-on-machine-learning-for-the-interdisciplinary-analysis-of-complex-phenomena-in-the-context-of-gdi-combustion-processes.pdf
In this work, a novel knowledge discovery framework able to analyze data produced in the Gasoline Direct Injection (GDI) context through machine learning is presented and validated. This approach is able to explore and exploit the investigated design spaces based on a limited number of observations,...
Γλώσσα: | English |
---|---|
Έκδοση: |
KIT Scientific Publishing
2023
|
Διαθέσιμο Online: | https://doi.org/10.5445/KSP/1000158016 |
Περίληψη: | In this work, a novel knowledge discovery framework able to analyze data produced in the Gasoline Direct Injection (GDI) context through machine learning is presented and validated. This approach is able to explore and exploit the investigated design spaces based on a limited number of observations, discovering and visualizing connections and correlations in complex phenomena. The extracted knowledge is then validated with domain expertise, revealing potential and limitations of this method. |
---|