spelling |
oapen-20.500.12657-639312023-07-15T02:46:15Z Methoden des bestärkenden Lernens für die Produktionsablaufplanung Lang, Sebastian Produktion Künstliche Intelligenz Reinforcement Learning Logistik Maschinelles Lernen Scheduling bic Book Industry Communication::U Computing & information technology::UY Computer science::UYQ Artificial intelligence::UYQM Machine learning bic Book Industry Communication::T Technology, engineering, agriculture::TG Mechanical engineering & materials::TGP Production engineering In diesem Open-Access-Buch wird eine Methode zur Adaption, Integration und Anwendung von bestärkenden Lernverfahren (Reinforcement Learning) für die Produktionsablaufplanung beschrieben. Die Methode wird anhand von typischen Problemstellungen der Produktionsablaufplanung hergeleitet und evaluiert. Die Produktionsablaufplanung ist eine Kernaufgabe der Produktion und Logistik, bei welcher Aufträge auf Ressourcen so verteilt und in Reihenfolge gebracht werden müssen, dass geforderte Nebenbedingungen der Planung erfüllt werden. Entsprechende Optimierungsprobleme sind meist NP-schwer, wodurch eine optimale Lösung gewöhnlich nicht unter wirtschaftlichen Bedingungen erzielbar ist. In der Industrie werden stattdessen Prioritätsregeln, Heuristiken oder Metaheuristiken verwendet, die entweder zeiteffizient zu Lasten der Lösungsgüte rechnen oder qualitativ hochwertige Lösungen unter hohem Rechenaufwand erzeugen. Das bestärkende Lernen ist eine Unterart des maschinellen Lernens und eine weitere Klasse potenzieller Lösungsstrategien. Probleme der Produktionsablaufplanung sind insoweit vergleichbar, als dass sie sich ebenfalls als stufenartige Entscheidungsketten modellieren lassen. Trotz ihrer Vorteile existiert bisher kaum allgemeines Wissen hinsichtlich der Anwendung des bestärkenden Lernens für die Produktionsablaufplanung. 2023-07-14T15:42:05Z 2023-07-14T15:42:05Z 2023 book ONIX_20230714_9783658417512_20 9783658417512 9783658417505 https://library.oapen.org/handle/20.500.12657/63931 ger application/pdf n/a 978-3-658-41751-2.pdf https://link.springer.com/978-3-658-41751-2 Springer Nature Springer Fachmedien Wiesbaden 10.1007/978-3-658-41751-2 In diesem Open-Access-Buch wird eine Methode zur Adaption, Integration und Anwendung von bestärkenden Lernverfahren (Reinforcement Learning) für die Produktionsablaufplanung beschrieben. Die Methode wird anhand von typischen Problemstellungen der Produktionsablaufplanung hergeleitet und evaluiert. Die Produktionsablaufplanung ist eine Kernaufgabe der Produktion und Logistik, bei welcher Aufträge auf Ressourcen so verteilt und in Reihenfolge gebracht werden müssen, dass geforderte Nebenbedingungen der Planung erfüllt werden. Entsprechende Optimierungsprobleme sind meist NP-schwer, wodurch eine optimale Lösung gewöhnlich nicht unter wirtschaftlichen Bedingungen erzielbar ist. In der Industrie werden stattdessen Prioritätsregeln, Heuristiken oder Metaheuristiken verwendet, die entweder zeiteffizient zu Lasten der Lösungsgüte rechnen oder qualitativ hochwertige Lösungen unter hohem Rechenaufwand erzeugen. Das bestärkende Lernen ist eine Unterart des maschinellen Lernens und eine weitere Klasse potenzieller Lösungsstrategien. Probleme der Produktionsablaufplanung sind insoweit vergleichbar, als dass sie sich ebenfalls als stufenartige Entscheidungsketten modellieren lassen. Trotz ihrer Vorteile existiert bisher kaum allgemeines Wissen hinsichtlich der Anwendung des bestärkenden Lernens für die Produktionsablaufplanung. 10.1007/978-3-658-41751-2 6c6992af-b843-4f46-859c-f6e9998e40d5 42712026-ec59-4e21-9992-a7a0aad9363a 9783658417512 9783658417505 Springer Fachmedien Wiesbaden 286 Wiesbaden [...] open access
|
description |
In diesem Open-Access-Buch wird eine Methode zur Adaption, Integration und Anwendung von bestärkenden Lernverfahren (Reinforcement Learning) für die Produktionsablaufplanung beschrieben. Die Methode wird anhand von typischen Problemstellungen der Produktionsablaufplanung hergeleitet und evaluiert. Die Produktionsablaufplanung ist eine Kernaufgabe der Produktion und Logistik, bei welcher Aufträge auf Ressourcen so verteilt und in Reihenfolge gebracht werden müssen, dass geforderte Nebenbedingungen der Planung erfüllt werden. Entsprechende Optimierungsprobleme sind meist NP-schwer, wodurch eine optimale Lösung gewöhnlich nicht unter wirtschaftlichen Bedingungen erzielbar ist. In der Industrie werden stattdessen Prioritätsregeln, Heuristiken oder Metaheuristiken verwendet, die entweder zeiteffizient zu Lasten der Lösungsgüte rechnen oder qualitativ hochwertige Lösungen unter hohem Rechenaufwand erzeugen. Das bestärkende Lernen ist eine Unterart des maschinellen Lernens und eine weitere Klasse potenzieller Lösungsstrategien. Probleme der Produktionsablaufplanung sind insoweit vergleichbar, als dass sie sich ebenfalls als stufenartige Entscheidungsketten modellieren lassen. Trotz ihrer Vorteile existiert bisher kaum allgemeines Wissen hinsichtlich der Anwendung des bestärkenden Lernens für die Produktionsablaufplanung.
|