9791221501063-54.pdf

The main aim of this work consists on a methodological proposal to represent and measure gender inequality in academia, focusing on the University of Padua. In order to reach our goal, we ended up with two different and complementary tools: a system of indicators and a composite indicator, that we c...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:English
Έκδοση: Firenze University Press, Genova University Press 2023
Διαθέσιμο Online:https://books.fupress.com/doi/capitoli/979-12-215-0106-3_54
id oapen-20.500.12657-74926
record_format dspace
spelling oapen-20.500.12657-749262023-08-03T17:59:37Z Chapter Gender INequality Indicator for Academia (GINIA) Silan, Margherita Boccuzzo, Giovanna Gender equality Composite indicator Sensitivity analysis bic Book Industry Communication::J Society & social sciences The main aim of this work consists on a methodological proposal to represent and measure gender inequality in academia, focusing on the University of Padua. In order to reach our goal, we ended up with two different and complementary tools: a system of indicators and a composite indicator, that we called Gender INequality Indicator for Academia (GINIA). Data used to build and compute GINIA in the University of Padua come both from administrative datasets and from an ad-hoc survey, whose data were adjusted by post-stratification weights. Starting from existing indexes described in the literature, the GINIA is articulated into seven domains: work, money, knowledge, time, power, health, and space. These seven domains are better specified and declined through twelve subdomains that are measured by seventeen variables. The composite indicator is the result of the three-step aggregation and weighting procedure: 1) variables are aggregated into subdomains with an arithmetic mean and equal weights; 2) subdomains are aggregated into domains by arithmetic mean with equal weights; 3) domains are aggregated into GINIA indicator by a weighted geometric mean. Indeed, we think that variables related to the same domain can compensate each other, while this consideration is not plausible for domains. Additionally, the weights in the last step are calculated through a preference matrix based on the responses of the respondents about the importance they give to each domain. The indicator can change substantially if we change the methods of weighting or aggregation. Therefore, an uncertainty and sensitivity analysis was undertaken to assess the robustness of the composite indicator as the final step of the analysis with the computation of bootstrap confidence intervals. 2023-08-03T15:07:07Z 2023-08-03T15:07:07Z 2023 chapter ONIX_20230803_9791221501063_122 2704-5846 9791221501063 https://library.oapen.org/handle/20.500.12657/74926 eng Proceedings e report application/pdf Attribution 4.0 International 9791221501063-54.pdf https://books.fupress.com/doi/capitoli/979-12-215-0106-3_54 Firenze University Press, Genova University Press ASA 2022 Data-Driven Decision Making 10.36253/979-12-215-0106-3.54 10.36253/979-12-215-0106-3.54 9223d3ac-6fd2-44c9-bb99-5b98ca9d2fad 863aa499-dbee-4191-9a14-3b5d5ef9e635 9791221501063 134 6 Florence open access
institution OAPEN
collection DSpace
language English
description The main aim of this work consists on a methodological proposal to represent and measure gender inequality in academia, focusing on the University of Padua. In order to reach our goal, we ended up with two different and complementary tools: a system of indicators and a composite indicator, that we called Gender INequality Indicator for Academia (GINIA). Data used to build and compute GINIA in the University of Padua come both from administrative datasets and from an ad-hoc survey, whose data were adjusted by post-stratification weights. Starting from existing indexes described in the literature, the GINIA is articulated into seven domains: work, money, knowledge, time, power, health, and space. These seven domains are better specified and declined through twelve subdomains that are measured by seventeen variables. The composite indicator is the result of the three-step aggregation and weighting procedure: 1) variables are aggregated into subdomains with an arithmetic mean and equal weights; 2) subdomains are aggregated into domains by arithmetic mean with equal weights; 3) domains are aggregated into GINIA indicator by a weighted geometric mean. Indeed, we think that variables related to the same domain can compensate each other, while this consideration is not plausible for domains. Additionally, the weights in the last step are calculated through a preference matrix based on the responses of the respondents about the importance they give to each domain. The indicator can change substantially if we change the methods of weighting or aggregation. Therefore, an uncertainty and sensitivity analysis was undertaken to assess the robustness of the composite indicator as the final step of the analysis with the computation of bootstrap confidence intervals.
title 9791221501063-54.pdf
spellingShingle 9791221501063-54.pdf
title_short 9791221501063-54.pdf
title_full 9791221501063-54.pdf
title_fullStr 9791221501063-54.pdf
title_full_unstemmed 9791221501063-54.pdf
title_sort 9791221501063-54.pdf
publisher Firenze University Press, Genova University Press
publishDate 2023
url https://books.fupress.com/doi/capitoli/979-12-215-0106-3_54
_version_ 1799945190170951680