machine-learning-for-camera-based-monitoring-of-laser-welding-processes.pdf

The increasing use of automated laser welding processes causes high demands on process monitoring. This work demonstrates methods that use a camera mounted on the focussing optics to perform pre-, in-, and post-process monitoring of welding processes. The implementation uses machine learning methods...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:English
Έκδοση: KIT Scientific Publishing 2024
Διαθέσιμο Online:https://doi.org/10.5445/KSP/1000164716
id oapen-20.500.12657-88624
record_format dspace
spelling oapen-20.500.12657-886242024-03-28T14:03:01Z Machine Learning for Camera-Based Monitoring of Laser Welding Processes Hartung, Julia CNN; stacked dilated U-Net; semantic segmentation; hairpin technology; laser welding; quality assurance; machine learning; Qualitätssicherung; semantische Segmentierung; Hairpin Technologie; Laserschweißen; Maschinelles Lernen; Künstliche Intelligenz thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TH Energy technology and engineering::THR Electrical engineering The increasing use of automated laser welding processes causes high demands on process monitoring. This work demonstrates methods that use a camera mounted on the focussing optics to perform pre-, in-, and post-process monitoring of welding processes. The implementation uses machine learning methods. All algorithms consider the integration into industrial processes. These challenges include a small database, limited industrial manufacturing inference hardware, and user acceptance. 2024-03-18T13:31:49Z 2024-03-18T13:31:49Z 2024 book https://library.oapen.org/handle/20.500.12657/88624 eng Forschungsberichte aus der Industriellen Informationstechnik application/pdf Attribution-ShareAlike 4.0 International machine-learning-for-camera-based-monitoring-of-laser-welding-processes.pdf https://doi.org/10.5445/KSP/1000164716 KIT Scientific Publishing 10.5445/KSP/1000164716 10.5445/KSP/1000164716 44e29711-8d53-496b-85cc-3d10c9469be9 32 258 open access
institution OAPEN
collection DSpace
language English
description The increasing use of automated laser welding processes causes high demands on process monitoring. This work demonstrates methods that use a camera mounted on the focussing optics to perform pre-, in-, and post-process monitoring of welding processes. The implementation uses machine learning methods. All algorithms consider the integration into industrial processes. These challenges include a small database, limited industrial manufacturing inference hardware, and user acceptance.
title machine-learning-for-camera-based-monitoring-of-laser-welding-processes.pdf
spellingShingle machine-learning-for-camera-based-monitoring-of-laser-welding-processes.pdf
title_short machine-learning-for-camera-based-monitoring-of-laser-welding-processes.pdf
title_full machine-learning-for-camera-based-monitoring-of-laser-welding-processes.pdf
title_fullStr machine-learning-for-camera-based-monitoring-of-laser-welding-processes.pdf
title_full_unstemmed machine-learning-for-camera-based-monitoring-of-laser-welding-processes.pdf
title_sort machine-learning-for-camera-based-monitoring-of-laser-welding-processes.pdf
publisher KIT Scientific Publishing
publishDate 2024
url https://doi.org/10.5445/KSP/1000164716
_version_ 1799945267643940864