external_content.pdf

The book presents a broad-scope analysis of piezoelectric electromechanical transducers and the related aspects of practical transducer design for underwater applications. It uses an energy method for analyzing transducer problems that provides the physical insight important for the understanding of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:Russian
Έκδοση: Academic Studies Press 2024
id oapen-20.500.12657-90078
record_format dspace
spelling oapen-20.500.12657-900782024-05-01T02:23:12Z Piezoelectric Electromechanical Transducers for Underwater Sound, Part II = Пьезоэлектрические электромеханические преобразователи в гидроакустике (Russian-Language Edition) Aronov, Boris S. Technology & Engineering Acoustics & Sound bic Book Industry Communication::T Technology, engineering, agriculture::TT Other technologies & applied sciences::TTA Acoustic & sound engineering The book presents a broad-scope analysis of piezoelectric electromechanical transducers and the related aspects of practical transducer design for underwater applications. It uses an energy method for analyzing transducer problems that provides the physical insight important for the understanding of electromechanical devices. Application of the method is first illustrated with transducer examples that can be modeled as systems with a single degree of freedom, (such as spheres, short cylinders, bars and flexural disks and plates made of piezoelectric ceramics). Thereupon, transducers are modeled as devices with multiple degrees of freedom. In all these cases, results of modeling are presented in the form of equivalent electromechanical circuits convenient for the calculation of the transducers’ operational characteristics. Special focus is made on the effects of coupled vibrations in mechanical systems on transducer performance. The book also provides extensive coverage of acoustic radiation including acoustic interaction between the transducers. The book is inherently multidisciplinary. It provides essential background regarding the vibration of elastic passive and piezoelectric bodies, piezoelectricity, acoustic radiation, and transducer characterization. Scientists and engineers working in the field of electroacoustics and those involved in education in the field will find this material useful not only for underwater acoustics, but also for electromechanics, energy conversion and medical ultrasonics. Part II contains general information on vibration of mechanical systems, electromechanical conversion in the deformed piezoceramic bodies, and acoustic radiation that can be used independently for treatment transducers of different type. 2024-04-30T05:30:55Z 2024-04-30T05:30:55Z 2024 book 9798887195759 https://library.oapen.org/handle/20.500.12657/90078 rus application/pdf Attribution-NonCommercial 4.0 International external_content.pdf Academic Studies Press Academic Studies Press ffe92610-fbe7-449b-a2a8-02c411701a23 b818ba9d-2dd9-4fd7-a364-7f305aef7ee9 9798887195759 Knowledge Unlatched (KU) Academic Studies Press Knowledge Unlatched open access
institution OAPEN
collection DSpace
language Russian
description The book presents a broad-scope analysis of piezoelectric electromechanical transducers and the related aspects of practical transducer design for underwater applications. It uses an energy method for analyzing transducer problems that provides the physical insight important for the understanding of electromechanical devices. Application of the method is first illustrated with transducer examples that can be modeled as systems with a single degree of freedom, (such as spheres, short cylinders, bars and flexural disks and plates made of piezoelectric ceramics). Thereupon, transducers are modeled as devices with multiple degrees of freedom. In all these cases, results of modeling are presented in the form of equivalent electromechanical circuits convenient for the calculation of the transducers’ operational characteristics. Special focus is made on the effects of coupled vibrations in mechanical systems on transducer performance. The book also provides extensive coverage of acoustic radiation including acoustic interaction between the transducers. The book is inherently multidisciplinary. It provides essential background regarding the vibration of elastic passive and piezoelectric bodies, piezoelectricity, acoustic radiation, and transducer characterization. Scientists and engineers working in the field of electroacoustics and those involved in education in the field will find this material useful not only for underwater acoustics, but also for electromechanics, energy conversion and medical ultrasonics. Part II contains general information on vibration of mechanical systems, electromechanical conversion in the deformed piezoceramic bodies, and acoustic radiation that can be used independently for treatment transducers of different type.
title external_content.pdf
spellingShingle external_content.pdf
title_short external_content.pdf
title_full external_content.pdf
title_fullStr external_content.pdf
title_full_unstemmed external_content.pdf
title_sort external_content.pdf
publisher Academic Studies Press
publishDate 2024
_version_ 1799945274489044992