Advances in survival analysis /

The book covers all important topics in the area of Survival Analysis. Each topic has been covered by one or more chapters written by internationally renowned experts. Each chapter provides a comprehensive and up-to-date review of the topic. Several new illustrative examples have been used to demons...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Balakrishnan, N., 1956- (Επιμελητής έκδοσης), Rao, C. Radhakrishna (Calyampudi Radhakrishna), 1920- (Επιμελητής έκδοσης)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Amsterdam ; Boston : Elsevier North-Holland, 2004.
Έκδοση:1st ed.
Σειρά:Handbook of statistics (Amsterdam, Netherlands) ; v. 23.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Cover
  • Table of Contents
  • Preface
  • Contributors
  • PART I: GENERAL METHODOLOGY
  • Chapter 1. Evaluation of the Performance of Survival Analysis Models: Discrimination and Calibration Measures
  • 1. Introduction
  • 2. Discrimination index
  • 3. Calibration measures in survival analysis
  • Appendix A
  • References
  • Chapter 2. Discretizing a Continuous Covariate in Survival Studies
  • 1. Introduction
  • 2. Techniques based on the Cox model with a single covariate
  • 3. Extensions of Contal and O'Quigley's approach
  • 4. Discussion
  • Acknowledgements
  • References
  • Chapter 3. On Comparison of Two Classification Methods with Survival Endpoints
  • 1. Introduction
  • 2. Degree of separation index
  • 3. Estimation and inference procedures
  • 4. Distribution property of test statistics under the null hypothesis
  • 5. Application examples
  • 6. Discussion and conclusion
  • Acknowledgement
  • References
  • Chapter 4. Time Varying Effects in Survival Analysis
  • 1. Time varying effects in survival analysis
  • 2. Estimation for proportional or additive models
  • 3. Testing in proportional and additive hazards models
  • 4. Survival with malignant melanoma
  • 5. Discussion
  • Acknowledgement
  • References
  • Chapter 5. Kaplan-Meier Integrals
  • 1. Introduction
  • 2. The SLLN
  • 3. The CLT
  • 4. Bias
  • 5. The jackknife
  • 6. Censored correlation and regression
  • 7. Conclusions
  • References
  • PART II: CENSORED DATA AND INFERENCE
  • Chapter 6. Statistical Analysis of Doubly Interval-Censored Failure Time Data
  • 1. Introduction
  • 2. Nonparametric estimation of a distribution function
  • 3. Semiparametric regression analysis
  • 4. Nonparametric comparison of survival functions
  • 5. Discussion and future researches
  • References
  • Chapter 7. The Missing Censoring-Indicator Model of Random Censorship
  • 1. Introduction
  • 2. Overview of the estimators of a survival function
  • 3. Semiparametric estimation in the MCI model
  • 4. Conclusion
  • Acknowledgement
  • References
  • Chapter 8. Estimation of the Bivariate Survival Function with Generalized Bivariate Right Censored Data Structures
  • 1. Introduction
  • 2. Modeling the censoring mechanism
  • 3. Constructing an initial mapping from full data estimating functions to observed data estimating functions
  • 4. Generalized Dabrowska's estimator
  • 5. Orthogonalized estimating function and corresponding estimator
  • 6. Simulations
  • 7. Discussion
  • Appendix A
  • References
  • Chapter 9. Estimation of Semi-Markov Models with Right-Censored Data
  • 1. Introduction
  • 2. Definition of the estimators
  • 3. Asymptotic distribution of the estimators
  • 4. Generalization to models with covariates
  • 5. Discussion
  • References
  • PART III: TRUNCATED DATA AND INFERENCE
  • Chapter 10. Nonparametric Bivariate Estimation with Randomly Truncated Observations
  • 1. Introduction
  • 2. Estimation of the bivariate distribution function
  • 3. Estimation of bivariate hazard
  • 4. Biv.