Numerical analysis of partial differential equations /

"This book provides a comprehensive and self-contained treatment of the numerical methods used to solve partial differential equations (PDEs), as well as both the error and efficiency of the presented methods. Featuring a large selection of theoretical examples and exercises, the book presents...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lui, S. H. (Shaun H.), 1961-
Μορφή: Βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, N.J. : Wiley, [2011]
Σειρά:Pure and applied mathematics (John Wiley & Sons : Unnumbered)
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 08088nam a2200649 4500
001 ocn712125079
003 OCoLC
005 20170313120234.0
008 110516s2011 njua b 001 0 eng
010 |a  2011013570 
040 |a DLC  |b eng  |c DLC  |d YDX  |d BTCTA  |d YDXCP  |d BWX  |d XII  |d CDX  |d IG#  |d DEBBG  |d BDX  |d OCLCF  |d OCLCQ  |d DXU  |d OCLCQ  |d GrThAP 
020 |a 9780470647288  |q (hardback) 
020 |a 0470647280  |q (hardback) 
020 |a 9781118111109 
020 |a 1118111109 
020 |a 9781118111116 
020 |a 1118111117 
020 |a 9781118111130 
020 |a 1118111133 
029 1 |a AU@  |b 000047031659 
029 1 |a CHBIS  |b 009756480 
029 1 |a CHDSB  |b 005948188 
029 1 |a CHVBK  |b 123432669 
029 1 |a CHVBK  |b 197627552 
029 1 |a DEBBG  |b BV039700484 
029 1 |a HEBIS  |b 268594643 
035 |a (OCoLC)712125079 
042 |a pcc 
050 0 0 |a QA377  |b .L84 2011 
082 0 0 |a 518/.64  |2 23 
084 |a MAT034000  |2 bisacsh 
084 |a SK 540  |2 rvk 
084 |a SK 520  |2 rvk 
049 |a MAIN 
100 1 |a Lui, S. H.  |q (Shaun H.),  |d 1961- 
245 1 0 |a Numerical analysis of partial differential equations /  |c S.H. Lui. 
264 1 |a Hoboken, N.J. :  |b Wiley,  |c [2011] 
264 4 |c Ã2011 
300 |a xiii, 487 pages :  |b illustrations ;  |c 27 cm. 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a Pure and applied mathematics : a Wiley series of texts, monographs, and tracts 
520 |a "This book provides a comprehensive and self-contained treatment of the numerical methods used to solve partial differential equations (PDEs), as well as both the error and efficiency of the presented methods. Featuring a large selection of theoretical examples and exercises, the book presents the main discretization techniques for PDEs, introduces advanced solution techniques, and discusses important nonlinear problems in many fields of science and engineering. It is designed as an applied mathematics text for advanced undergraduate and/or first-year graduate level courses on numerical PDEs"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
500 |a Machine generated contents note: Preface. Acknowledgments. 1. Finite Difference. 1.1 Second-Order Approximation for [delta].1.2 Fourth-Order Approximation for [delta].1.3 Neumann Boundary Condition. 1.4 Polar Coordinates. 1.5 Curved Boundary. 1.6 Difference Approximation for [delta]2.1.7 A Convection-Diffusion Equation. 1.8 Appendix: Analysis of Discrete Operators. 1.9 Summary and Exercises. 2. Mathematical Theory of Elliptic PDEs. 2.1 Function Spaces. 2.2 Derivatives. 2.3 Sobolev Spaces. 2.4 Sobolev Embedding Theory. 2.5 Traces. 2.6 Negative Sobolev Spaces. 2.7 Some Inequalities and Identities. 2.8 Weak Solutions. 2.9 Linear Elliptic PDEs. 2.10 Appendix: Some Definitions and Theorems. 2.11 Summary and Exercises. 3. Finite Elements. 3.1 Approximate Methods of Solution. 3.2 Finite Elements in 1D.3.3 Finite Elements in 2D.3.4 Inverse Estimate. 3.5 L2 and Negative-Norm Estimates. 3.6 A Posteriori Estimate. 3.7 Higher-Order Elements. 3.8 Quadrilateral Elements. 3.9 Numerical Integration. 3.10 Stokes Problem. 3.11 Linear Elasticity. 3.12 Summary and Exercises. 4. Numerical Linear Algebra. 4.1 Condition Numbers. 4.2 Classical Iterative Methods. 4.3 Krylov Subspace Methods. 4.4 Preconditioning. 4.5 Direct Methods. 4.6 Appendix: Chebyshev Polynomials. 4.7 Summary and Exercises. 5. Spectral Methods. 5.1 Trigonometric Polynomials. 5.2 Fourier Spectral Method. 5.3 Orthogonal Polynomials. 5.4 Spectral Gakerkin and Spectral Tau Methods. 5.5 Spectral Collocation. 5.6 Polar Coordinates. 5.7 Neumann Problems5.8 Fourth-Order PDEs. 5.9 Summary and Exercises. 6. Evolutionary PDEs. 6.1 Finite Difference Schemes for Heat Equation. 6.2 Other Time Discretization Schemes. 6.3 Convection-Dominated equations. 6.4 Finite Element Scheme for Heat Equation. 6.5 Spectral Collocation for Heat Equation. 6.6 Finite Different Scheme for Wave Equation. 6.7 Dispersion. 6.8 Summary and Exercises. 7. Multigrid. 7.1 Introduction. 7.2 Two-Grid Method. 7.3 Practical Multigrid Algorithms. 7.4 Finite Element Multigrid. 7.5 Summary and Exercises. 8. Domain Decomposition. 8.1 Overlapping Schwarz Methods. 8.2 Projections. 8.3 Non-overlapping Schwarz Method. 8.4 Substructuring Methods. 8.5 Optimal Substructuring Methods. 8.6 Summary and Exercises. 9. Infinite Domains. 9.1 Absorbing Boundary Conditions. 9.2 Dirichlet-Neumann Map. 9.3 Perfectly Matched Layer. 9.4 Boundary Integral Methods. 9.5 Fast Multiple Method. 9.6 Summary and Exercises. 10. Nonlinear Problems. 10.1 Newton's Method. 10.2 Other Methods. 10.3 Some Nonlinear Problems. 10.4 Software. 10.5 Program Verification. 10.6 Summary and Exercises. Answers to Selected Exercises. References. Index. 
505 0 0 |g Preface. Acknowledgments --  |t Finite Difference. --  |t Second-Order Approximation for [delta] --  |t Fourth-Order Approximation for [delta] --  |t Neumann Boundary Condition --  |t Polar Coordinates --  |t Curved Boundary --  |t Difference Approximation for [delta] --  |t A Convection-Diffusion Equation --  |g Appendix:  |t Analysis of Discrete Operators --  |t Summary and Exercises --  |t Mathematical Theory of Elliptic PDEs --  |t Function Spaces --  |t Derivatives --  |t Sobolev Spaces --  |t Sobolev Embedding Theory --  |t Traces --  |t Negative Sobolev Spaces --  |t Some Inequalities and Identities --  |t Weak Solutions --  |t Linear Elliptic PDEs --  |g Appendix:  |t Some Definitions and Theorems --  |g Summary and Exercises --  |t Finite Elements. 3.1 Approximate Methods of Solution --  |t Finite Elements in 1D --  |t Finite Elements in 2D --  |t Inverse Estimate --  |t L2 and Negative-Norm Estimates --  |t A Posteriori Estimate --  |t Higher-Order Elements --  |t Quadrilateral Elements --  |t Numerical Integration --  |t Stokes Problem --  |t Linear Elasticity --  |g Summary and Exercises --  |t Numerical Linear Algebra --  |t Condition Numbers --  |t Classical Iterative Methods --  |t Krylov Subspace Methods --  |t Preconditioning --  |t Direct Methods --  |g Appendix:  |t Chebyshev Polynomials --  |g Summary and Exercises --  |t Spectral Methods --  |t Trigonometric Polynomials --  |t Fourier Spectral Method --  |t Orthogonal Polynomials --  |t Spectral Gakerkin and Spectral Tau Methods --  |t Spectral Collocation --  |t Polar Coordinates --  |t Neumann Problems --  |t Fourth-Order PDEs --  |g Summary and Exercises --  |t Evolutionary PDEs --  |t Finite Difference Schemes for Heat Equation --  |t Other Time Discretization Schemes --  |t Convection-Dominated equations --  |t Finite Element Scheme for Heat Equation --  |t Spectral Collocation for Heat Equation --  |t Finite Different Scheme for Wave Equation --  |t Dispersion --  |g Summary and Exercises --  |t Multigrid --  |g Introduction --  |t Two-Grid Method --  |t Practical Multigrid Algorithms --  |t Finite Element Multigrid --  |g Summary and Exercises --  |t Domain Decomposition --  |t Overlapping Schwarz Methods --  |t Projections --  |t Non-overlapping Schwarz Method --  |t Substructuring Methods --  |t Optimal Substructuring Methods --  |g Summary and Exercises --  |t Infinite Domains --  |t Absorbing Boundary Conditions --  |t Dirichlet-Neumann Map --  |t Perfectly Matched Layer --  |t Boundary Integral Methods --  |t Fast Multiple Method --  |g Summary and Exercises --  |t Nonlinear Problems --  |t Newton's Method --  |t Other Methods --  |t Some Nonlinear Problems --  |t Software --  |t Program Verification --  |g Summary and Exercises. Answers to Selected Exercises. References. Index. 
650 0 |a Differential equations, Partial  |x Numerical solutions. 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Differential equations, Partial  |x Numerical solutions.  |2 fast  |0 (OCoLC)fst00893488 
650 0 7 |a Numerisches Verfahren.  |0 (DE-588)4128130-5  |2 gnd 
650 0 7 |a Partielle Differentialgleichung.  |0 (DE-588)4044779-0  |2 gnd 
650 0 7 |a Numerisches Verfahren.  |0 (DE-588c)4128130-5  |2 swd 
650 0 7 |a Partielle Differentialgleichung.  |0 (DE-588c)4044779-0  |2 swd 
830 0 |a Pure and applied mathematics (John Wiley & Sons : Unnumbered) 
856 4 0 |u https://doi.org/10.1002/9781118111130  |z Full Text via HEAL-Link 
994 |a 92  |b DG1