An elementary introduction to statistical learning theory /

"A joint endeavor from leading researchers in the fields of philosophy and electrical engineering An Introduction to Statistical Learning Theory provides a broad and accessible introduction to rapidly evolving field of statistical pattern recognition and statistical learning theory. Exploring t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kulkarni, Sanjeev
Συγγραφή απο Οργανισμό/Αρχή: Wiley InterScience (Online service)
Άλλοι συγγραφείς: Harman, Gilbert
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, N.J. : Wiley, [2011]
Σειρά:Wiley series in probability and statistics.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04869nam a2200961 4500
001 ocn729724626
003 OCoLC
005 20170124072349.2
006 m o d
007 cr cn|||||||||
008 110609s2011 njua ob 001 0 eng d
040 |a DG1  |b eng  |e pn  |c DG1  |d IDEBK  |d YDXCP  |d E7B  |d CDX  |d OCLCQ  |d COD  |d N$T  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCA  |d UKDOC  |d OCLCQ  |d RIV  |d NLGGC  |d OCLCQ  |d OCLCF  |d DEBBG  |d OCLCQ  |d COO  |d OCLCQ  |d GrThAP 
019 |a 726329153  |a 732956377  |a 741451118  |a 754717771  |a 778448327  |a 816840042 
020 |a 9781118023471  |q (electronic bk.) 
020 |a 1118023471  |q (electronic bk.) 
020 |a 9781118023433  |q (e-book) 
020 |a 1118023439  |q (e-book) 
020 |a 1283098687 
020 |a 9781283098687 
020 |z 9780470641835 
020 |z 9781118023464  |q (ePub) 
020 |z 0470641835 
020 |z 1118023463 
029 1 |a AU@  |b 000047226102 
029 1 |a AU@  |b 000047551214 
029 1 |a AU@  |b 000051561706 
029 1 |a DEBBG  |b BV041910322 
029 1 |a DEBBG  |b BV042961309 
029 1 |a DEBSZ  |b 37272938X 
029 1 |a DEBSZ  |b 372734472 
029 1 |a DEBSZ  |b 396995543 
029 1 |a DEBSZ  |b 421528567 
029 1 |a DEBSZ  |b 430992661 
029 1 |a DEBSZ  |b 449241793 
029 1 |a DKDLA  |b 820120-katalog:000572952 
029 1 |a HEBIS  |b 299829545 
029 1 |a NZ1  |b 13751530 
029 1 |a NZ1  |b 14256865 
029 1 |a NZ1  |b 15341319 
029 1 |a AU@  |b 000058376262 
029 1 |a DEBBG  |b BV043393145 
035 |a (OCoLC)729724626  |z (OCoLC)726329153  |z (OCoLC)732956377  |z (OCoLC)741451118  |z (OCoLC)754717771  |z (OCoLC)778448327  |z (OCoLC)816840042 
037 |a 10.1002/9781118023471  |b Wiley InterScience  |n http://www3.interscience.wiley.com 
050 4 |a Q325.5  |b .K85 2011 
060 4 |a Q 325.5 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 22 
049 |a MAIN 
100 1 |a Kulkarni, Sanjeev. 
245 1 3 |a An elementary introduction to statistical learning theory /  |c Sanjeev Kulkarni, Gilbert Harman. 
264 1 |a Hoboken, N.J. :  |b Wiley,  |c [2011] 
264 4 |c ©2011 
300 |a 1 online resource (1 volume) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Wiley series in probability and statistics 
505 0 |a Introduction: Classification, Learning, Features, and Applications -- Probability -- Probability Densities -- The Pattern Recognition Problem -- The Optimal Bayes Decision Rule -- Learning from Examples -- The Nearest Neighbor Rule -- Kernel Rules -- Neural Networks: Perceptrons -- Multilayer Networks -- PAC Learning -- VC Dimension -- Infinite VC Dimension -- The Function Estimation Problem -- Learning Function Estimation -- Simplicity -- Support Vector Machines -- Boosting. 
520 |a "A joint endeavor from leading researchers in the fields of philosophy and electrical engineering An Introduction to Statistical Learning Theory provides a broad and accessible introduction to rapidly evolving field of statistical pattern recognition and statistical learning theory. Exploring topics that are not often covered in introductory level books on statistical learning theory, including PAC learning, VC dimension, and simplicity, the authors present upper-undergraduate and graduate levels with the basic theory behind contemporary machine learning and uniquely suggest it serves as an excellent framework for philosophical thinking about inductive inference"--Back cover. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
650 0 |a Machine learning  |x Statistical methods. 
650 0 |a Pattern recognition systems. 
650 2 |a Artificial Intelligence. 
650 2 |a Pattern Recognition, Automated. 
650 2 |a Statistics as Topic. 
650 0 4 |a Aprenentatge automàtic  |x Mètodes estadístics. 
650 4 |a Reconeixement de formes (Informàtica) 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Machine learning  |x Statistical methods.  |2 fast  |0 (OCoLC)fst01004801 
650 7 |a Pattern recognition systems.  |2 fast  |0 (OCoLC)fst01055266 
650 0 7 |a Maschinelles Lernen.  |0 (DE-588c)4193754-5  |2 swd 
650 0 7 |a Statistik.  |0 (DE-588c)4056995-0  |2 swd 
655 4 |a Llibres electrònics. 
655 4 |a Electronic books. 
700 1 |a Harman, Gilbert. 
710 2 |a Wiley InterScience (Online service) 
776 0 8 |i Print version:  |a Kulkarni, Sanjeev.  |t Elementary introduction to statistical learning theory.  |d Hoboken, N.J. : Wiley, ©2011  |z 9781118023471  |w (OCoLC)726329153 
830 0 |a Wiley series in probability and statistics. 
856 4 0 |u https://doi.org/10.1002/9781118023471  |z Full Text via HEAL-Link 
994 |a 92  |b DG1