|
|
|
|
LEADER |
04869nam a2200961 4500 |
001 |
ocn729724626 |
003 |
OCoLC |
005 |
20170124072349.2 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
110609s2011 njua ob 001 0 eng d |
040 |
|
|
|a DG1
|b eng
|e pn
|c DG1
|d IDEBK
|d YDXCP
|d E7B
|d CDX
|d OCLCQ
|d COD
|d N$T
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d OCLCA
|d UKDOC
|d OCLCQ
|d RIV
|d NLGGC
|d OCLCQ
|d OCLCF
|d DEBBG
|d OCLCQ
|d COO
|d OCLCQ
|d GrThAP
|
019 |
|
|
|a 726329153
|a 732956377
|a 741451118
|a 754717771
|a 778448327
|a 816840042
|
020 |
|
|
|a 9781118023471
|q (electronic bk.)
|
020 |
|
|
|a 1118023471
|q (electronic bk.)
|
020 |
|
|
|a 9781118023433
|q (e-book)
|
020 |
|
|
|a 1118023439
|q (e-book)
|
020 |
|
|
|a 1283098687
|
020 |
|
|
|a 9781283098687
|
020 |
|
|
|z 9780470641835
|
020 |
|
|
|z 9781118023464
|q (ePub)
|
020 |
|
|
|z 0470641835
|
020 |
|
|
|z 1118023463
|
029 |
1 |
|
|a AU@
|b 000047226102
|
029 |
1 |
|
|a AU@
|b 000047551214
|
029 |
1 |
|
|a AU@
|b 000051561706
|
029 |
1 |
|
|a DEBBG
|b BV041910322
|
029 |
1 |
|
|a DEBBG
|b BV042961309
|
029 |
1 |
|
|a DEBSZ
|b 37272938X
|
029 |
1 |
|
|a DEBSZ
|b 372734472
|
029 |
1 |
|
|a DEBSZ
|b 396995543
|
029 |
1 |
|
|a DEBSZ
|b 421528567
|
029 |
1 |
|
|a DEBSZ
|b 430992661
|
029 |
1 |
|
|a DEBSZ
|b 449241793
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:000572952
|
029 |
1 |
|
|a HEBIS
|b 299829545
|
029 |
1 |
|
|a NZ1
|b 13751530
|
029 |
1 |
|
|a NZ1
|b 14256865
|
029 |
1 |
|
|a NZ1
|b 15341319
|
029 |
1 |
|
|a AU@
|b 000058376262
|
029 |
1 |
|
|a DEBBG
|b BV043393145
|
035 |
|
|
|a (OCoLC)729724626
|z (OCoLC)726329153
|z (OCoLC)732956377
|z (OCoLC)741451118
|z (OCoLC)754717771
|z (OCoLC)778448327
|z (OCoLC)816840042
|
037 |
|
|
|a 10.1002/9781118023471
|b Wiley InterScience
|n http://www3.interscience.wiley.com
|
050 |
|
4 |
|a Q325.5
|b .K85 2011
|
060 |
|
4 |
|a Q 325.5
|
072 |
|
7 |
|a COM
|x 005030
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 004000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.3/1
|2 22
|
049 |
|
|
|a MAIN
|
100 |
1 |
|
|a Kulkarni, Sanjeev.
|
245 |
1 |
3 |
|a An elementary introduction to statistical learning theory /
|c Sanjeev Kulkarni, Gilbert Harman.
|
264 |
|
1 |
|a Hoboken, N.J. :
|b Wiley,
|c [2011]
|
264 |
|
4 |
|c ©2011
|
300 |
|
|
|a 1 online resource (1 volume) :
|b illustrations.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Wiley series in probability and statistics
|
505 |
0 |
|
|a Introduction: Classification, Learning, Features, and Applications -- Probability -- Probability Densities -- The Pattern Recognition Problem -- The Optimal Bayes Decision Rule -- Learning from Examples -- The Nearest Neighbor Rule -- Kernel Rules -- Neural Networks: Perceptrons -- Multilayer Networks -- PAC Learning -- VC Dimension -- Infinite VC Dimension -- The Function Estimation Problem -- Learning Function Estimation -- Simplicity -- Support Vector Machines -- Boosting.
|
520 |
|
|
|a "A joint endeavor from leading researchers in the fields of philosophy and electrical engineering An Introduction to Statistical Learning Theory provides a broad and accessible introduction to rapidly evolving field of statistical pattern recognition and statistical learning theory. Exploring topics that are not often covered in introductory level books on statistical learning theory, including PAC learning, VC dimension, and simplicity, the authors present upper-undergraduate and graduate levels with the basic theory behind contemporary machine learning and uniquely suggest it serves as an excellent framework for philosophical thinking about inductive inference"--Back cover.
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
650 |
|
0 |
|a Machine learning
|x Statistical methods.
|
650 |
|
0 |
|a Pattern recognition systems.
|
650 |
|
2 |
|a Artificial Intelligence.
|
650 |
|
2 |
|a Pattern Recognition, Automated.
|
650 |
|
2 |
|a Statistics as Topic.
|
650 |
0 |
4 |
|a Aprenentatge automàtic
|x Mètodes estadístics.
|
650 |
|
4 |
|a Reconeixement de formes (Informàtica)
|
650 |
|
7 |
|a COMPUTERS
|x Enterprise Applications
|x Business Intelligence Tools.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Intelligence (AI) & Semantics.
|2 bisacsh
|
650 |
|
7 |
|a Machine learning
|x Statistical methods.
|2 fast
|0 (OCoLC)fst01004801
|
650 |
|
7 |
|a Pattern recognition systems.
|2 fast
|0 (OCoLC)fst01055266
|
650 |
0 |
7 |
|a Maschinelles Lernen.
|0 (DE-588c)4193754-5
|2 swd
|
650 |
0 |
7 |
|a Statistik.
|0 (DE-588c)4056995-0
|2 swd
|
655 |
|
4 |
|a Llibres electrònics.
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Harman, Gilbert.
|
710 |
2 |
|
|a Wiley InterScience (Online service)
|
776 |
0 |
8 |
|i Print version:
|a Kulkarni, Sanjeev.
|t Elementary introduction to statistical learning theory.
|d Hoboken, N.J. : Wiley, ©2011
|z 9781118023471
|w (OCoLC)726329153
|
830 |
|
0 |
|a Wiley series in probability and statistics.
|
856 |
4 |
0 |
|u https://doi.org/10.1002/9781118023471
|z Full Text via HEAL-Link
|
994 |
|
|
|a 92
|b DG1
|