Handbook of monte carlo methods /
A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications. More and more of today's numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their...
Κύριοι συγγραφείς: | , , |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
[Place of publication not identified] :
Wiley,
2011.
|
Σειρά: | Wiley series in probability and statistics ;
706. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Cover13;
- Contents
- Preface
- Acknowledgments
- 1 Uniform Random Number Generation
- 1.1 Random Numbers
- 1.1.1 Properties of a Good Random Number Generator
- 1.1.2 Choosing a Good Random Number Generator
- 1.2 Generators Based on Linear Recurrences
- 1.2.1 Linear Congruential Generators
- 1.2.2 Multiple-Recursive Generators
- 1.2.3 Matrix Congruential Generators
- 1.2.4 Modulo 2 Linear Generators
- 1.3 Combined Generators
- 1.4 Other Generators
- 1.5 Tests for Random Number Generators
- 1.5.1 Spectral Test
- 1.5.2 Empirical Tests
- References
- 2 Quasirandom Number Generation
- 2.1 Multidimensional Integration
- 2.2 Van der Corput and Digital Sequences
- 2.3 Halton Sequences
- 2.4 Faure Sequences
- 2.5 Sobol' Sequences
- 2.6 Lattice Methods
- 2.7 Randomization and Scrambling
- References
- 3 Random Variable Generation
- 3.1 Generic Algorithms Based on Common Transformations
- 3.1.1 Inverse-Transform Method
- 3.1.2 Other Transformation Methods
- 3.1.3 Table Lookup Method
- 3.1.4 Alias Method
- 3.1.5 Acceptance-Rejection Method
- 3.1.6 Ratio of Uniforms Method
- 3.2 Generation Methods for Multivariate Random Variables
- 3.2.1 Copulas
- 3.3 Generation Methods for Various Random Objects
- 3.3.1 Generating Order Statistics
- 3.3.2 Generating Uniform Random Vectors in a Simplex
- 3.3.3 Generating Random Vectors Uniformly Distributed in a Unit Hyperball and Hypersphere
- 3.3.4 Generating Random Vectors Uniformly Distributed in a Hyperellipsoid
- 3.3.5 Uniform Sampling on a Curve
- 3.3.6 Uniform Sampling on a Surface
- 3.3.7 Generating Random Permutations
- 3.3.8 Exact Sampling From a Conditional Bernoulli Distribution
- References
- 4 Probability Distributions
- 4.1 Discrete Distributions
- 4.1.1 Bernoulli Distribution
- 4.1.2 Binomial Distribution
- 4.1.3 Geometric Distribution
- 4.1.4 Hypergeometric Distribution
- 4.1.5 Negative Binomial Distribution
- 4.1.6 Phase-Type Distribution (Discrete Case)
- 4.1.7 Poisson Distribution
- 4.1.8 Uniform Distribution (Discrete Case)
- 4.2 Continuous Distributions
- 4.2.1 Beta Distribution
- 4.2.2 Cauchy Distribution
- 4.2.3 Exponential Distribution
- 4.2.4 F Distribution
- 4.2.5 Fr233;chet Distribution
- 4.2.6 Gamma Distribution
- 4.2.7 Gumbel Distribution
- 4.2.8 Laplace Distribution
- 4.2.9 Logistic Distribution
- 4.2.10 Log-Normal Distribution
- 4.2.11 Normal Distribution
- 4.2.12 Pareto Distribution
- 4.2.13 Phase-Type Distribution (Continuous Case)
- 4.2.14 Stable Distribution
- 4.2.15 Student's t Distribution
- 4.2.16 Uniform Distribution (Continuous Case)
- 4.2.17 Wald Distribution
- 4.2.18 Weibull Distribution
- 4.3 Multivariate Distributions
- 4.3.1 Dirichlet Distribution
- 4.3.2 Multinomial Distribution
- 4.3.3 Multivariate Normal Distribution
- 4.3.4 Multivariate Student's t Distribution
- 4.3.5 Wishart Distribution
- References
- 5 Random Process Generation
- 5.1 Gaussian Processes
- 5.1.1 Markovian Gaussian Processes
- 5.1.2 Stationary Gaussian Processes and the FFT
- 5.2 Markov Chains
- 5.3 Markov Jump Processes
- 5.4 Poisson Processes
- 5.4.1 Compound Poisson Process
- 5.5 Wiener Process and Brownian Motion
- 5.6 Stochastic Differential Eq.