Engineering Quantum Mechanics.

A clear introduction to quantum mechanics concepts Quantum mechanics has become an essential tool for modern engineering, particularly due to the recent developments in quantum computing as well as the rapid progress in optoelectronic devices. Engineering Quantum Mechanics explains the fundamentals...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Park, Seoung-Hwan (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiley-IEEE Press 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06821nam a2200745 4500
001 ocn743413711
003 OCoLC
005 20170124070551.1
006 m o d
007 cr un|---uuuuu
008 110627s2011 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d OCLCQ  |d N$T  |d E7B  |d YDXCP  |d UIU  |d UKMGB  |d DG1  |d IEEEE  |d REDDC  |d ZMC  |d DEBSZ  |d COO  |d UMI  |d AFU  |d UKDOC  |d NLGGC  |d DEBBG  |d EBLCP  |d SOI  |d OCLCO  |d S3O  |d ZZAND  |d OCLCQ  |d N$T  |d OCLCQ  |d MNU  |d GrThAP 
019 |a 742515614  |a 748365733  |a 761321458  |a 796754619  |a 816844997  |a 826648240 
020 |z 9780470107638  |q (print) 
020 |z 0470107634  |q (print) 
020 |a 9781118017814  |q (ePub) 
020 |a 1118017811  |q (ePub) 
020 |a 9781118017807  |q (ePDF) 
020 |a 1118017803  |q (ePDF) 
020 |a 9781118017821  |q (oBook) 
020 |a 111801782X  |q (oBook) 
029 1 |a AU@  |b 000049065149 
029 1 |a AU@  |b 000050590875 
029 1 |a DEBBG  |b BV041121150 
029 1 |a DEBBG  |b BV041910460 
029 1 |a DEBSZ  |b 372695914 
029 1 |a DEBSZ  |b 377432261 
029 1 |a DEBSZ  |b 396760759 
029 1 |a DEBSZ  |b 430989482 
029 1 |a NLGGC  |b 337217319 
029 1 |a NZ1  |b 15915433 
029 1 |a DEBBG  |b BV043393497 
035 |a (OCoLC)743413711  |z (OCoLC)742515614  |z (OCoLC)748365733  |z (OCoLC)761321458  |z (OCoLC)796754619  |z (OCoLC)816844997  |z (OCoLC)826648240 
050 4 |a QC174.12  |b .A393 2011eb 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
082 0 4 |a 620.001/53012  |2 23 
049 |a MAIN 
245 0 0 |a Engineering Quantum Mechanics. 
264 1 |b Wiley-IEEE Press  |c 2011. 
300 |a 1 online resource (200) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover -- CONTENTS -- Preface -- PART I: Fundamentals -- 1: Basic Quantum Mechanics -- 1.1 MEASUREMENTS AND PROBABILITY -- 1.2 DIRAC FORMULATION -- 1.3 BRIEF DETOUR TO CLASSICAL MECHANICS -- 1.4 A ROAD TO QUANTUM MECHANICS -- 1.5 THE UNCERTAINTY PRINCIPLE -- 1.6 THE HARMONIC OSCILLATOR -- 1.7 ANGULAR MOMENTUM EIGENSTATES -- 1.8 QUANTIZATION OF ELECTROMAGNETIC FIELDS -- 1.9 PERTURBATION THEORY -- PROBLEMS -- REFERENCES -- 2: Basic Quantum Statistical Mechanics -- 2.1 ELEMENTARY STATISTICAL MECHANICS -- 2.2 SECOND QUANTIZATION -- 2.3 DENSITY OPERATORS -- 2.4 THE COHERENT STATE -- 2.5 THE SQUEEZED STATE -- 2.6 COHERENT INTERACTIONS BETWEEN ATOMS AND FIELDS -- 2.7 THE JAYNES8211;CUMMINGS MODEL -- PROBLEMS -- REFERENCES -- 3: Elementary Theory of Electronic Band Structure in Semiconductors -- 3.1 BLOCH THEOREM AND EFFECTIVE MASS THEORY -- 3.2 THE LUTTINGER8211;KOHN HAMILTONIAN -- 3.3 THE ZINC BLENDE HAMILTONIAN -- 3.4 THE WURTZITE HAMILTONIAN -- 3.5 BAND STRUCTURE OF ZINC BLENDE AND WURTZITE SEMICONDUCTORS -- 3.6 CRYSTAL ORIENTATION EFFECTS ON A ZINC BLENDE HAMILTONIAN -- 3.7 CRYSTAL ORIENTATION EFFECTS ON A WURTZITE HAMILTONIAN -- PROBLEMS -- REFERENCES -- PART II: Modern Applications -- 4: Quantum Information Science -- 4.1 QUANTUM BITS AND TENSOR PRODUCTS -- 4.2 QUANTUM ENTANGLEMENT -- 4.3 QUANTUM TELEPORTATION -- 4.4 EVOLUTION OF THE QUANTUM STATE: QUANTUM INFORMATION PROCESSING -- 4.5 A MEASURE OF INFORMATION -- 4.6 QUANTUM BLACK HOLES -- APPENDIX A: DERIVATION OF EQUATION (4.82) -- APPENDIX B: DERIVATION OF EQUATIONS (4.93) AND (4.106) -- PROBLEMS -- REFERENCES -- 5: Modern Semiconductor Laser Theory -- 5.1 DENSITY OPERATOR DESCRIPTION OF OPTICAL INTERACTIONS -- 5.2 THE TIME-CONVOLUTIONLESS EQUATION -- 5.3 THE THEORY OF NON-MARKOVIAN OPTICAL GAIN IN SEMICONDUCTOR LASERS -- 5.4 OPTICAL GAIN OF A QUANTUM WELL LASER WITH NON-MARKOVIAN RELAXATION AND MANY-BODY EFFECTS -- 5.5 NUMERICAL METHODS FOR VALENCE BAND STRUCTURE IN NANOSTRUCTURES -- 5.6 ZINC BLENDE BULK AND QUANTUM WELL STRUCTURES -- 5.7 WURTZITE BULK AND QUANTUM WELL STRUCTURES -- 5.8 QUANTUM WIRES AND QUANTUM DOTS -- PROBLEMS -- REFERENCES -- INDEX. 
520 |a A clear introduction to quantum mechanics concepts Quantum mechanics has become an essential tool for modern engineering, particularly due to the recent developments in quantum computing as well as the rapid progress in optoelectronic devices. Engineering Quantum Mechanics explains the fundamentals of this exciting field, providing broad coverage of both traditional areas such as semiconductor and laser physics as well as relatively new yet fast-growing areas such as quantum computation and quantum information technology. The book begins with basic quantum mechanics, reviewing measurements and probability, Dirac formulation, the uncertainty principle, harmonic oscillator, angular momentum eigenstates, and perturbation theory. Then, quantum statistical mechanics is explored, from second quantization and density operators to coherent and squeezed states, coherent interactions between atoms and fields, and the Jaynes-Cummings model. From there, the book moves into elementary and modern applications, discussing such topics as Bloch theorem and effective mass theory, crystal orientation effects for zinc-blend and wurtzite Hamiltonian, and quantum entanglements and teleportation. There has been growing interest in the model of semiconductor lasers with non-Markovian relaxation. This book develops a non-Markovian model for the optical gain in semiconductor materials, taking into account the rigorous electronic band-structure and the non-Markovian relaxation using the quantum statistical reduced-density operator formalism. Many-body effects are taken into account within the time-dependent Hartree-Fock equations, and example programs based on Fortran 77 are provided for band-structures of zinc-blend quantum wells. Engineering Quantum Mechanics is intended for advanced undergraduate and graduate students in electrical engineering, physics, and materials science. It also provides the necessary theoretical background for researchers in optoelectronics or semiconductor devices. 
650 0 |a Quantum theory. 
650 0 |a Stochastic processes. 
650 0 |a Engineering mathematics. 
650 0 |a Semiconductors  |x Electric properties  |x Mathematical models. 
650 4 |a Quantum theory. 
650 4 |a Stochastic processes. 
650 4 |a Engineering mathematics. 
650 4 |a Semiconductors  |x Electric properties  |x Mathematical models. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Reference.  |2 bisacsh 
650 7 |a Quantum theory.  |2 local 
650 7 |a Stochastic processes.  |2 local 
650 7 |a Engineering mathematics.  |2 local 
650 7 |a Semiconductors / Electric properties / Mathematical models.  |2 local 
655 4 |a Electronic resource. 
700 1 |a Park, Seoung-Hwan.  |4 aut 
720 |a Ahn, Doyeol. 
856 4 0 |u https://doi.org/10.1002/9781118017821  |z Full Text via HEAL-Link 
994 |a 92  |b DG1