Maximum likelihood estimation and inference : with examples in R, SAS, and ADMB /

"Applied Likelihood Methods provides an accessible and practical introduction to likelihood modeling, supported by examples and software. The book features applications from a range of disciplines, including statistics, medicine, biology, and ecology. The methods are implemented in SAS--the mos...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Millar, R. B. (Russell B.)
Συγγραφή απο Οργανισμό/Αρχή: Wiley InterScience (Online service)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, N.J. : Wiley, [2011]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Front Matter
  • Preliminaries. A Taste of Likelihood
  • Essential Concepts and Iid Examples
  • Pragmatics. Hypothesis Tests and Confidence Intervals or Regions
  • What you Really need to Know
  • Maximizing the Likelihood
  • Some Widely Used Applications of Maximum Likelihood
  • Generalized Linear Models and Extensions
  • Quasi-Likelihood and Generalized Estimating Equations
  • ML Inference in the Presence of Incidental Parameters
  • Latent Variable Models
  • Theoretical Foundations. Cram̌r-Rao Inequality and Fisher Information
  • Asymptotic Theory and Approximate Normality
  • Tools of the Trade
  • Fundamental Paradigms and Principles of Inference
  • Miscellanea
  • Appendix: Partial Solutions to Selected Exercises
  • Bibliography
  • Index
  • Statistics in Practice.