System health management : with aerospace applications /
"System Health Management with Aerospace Applications is the first reference text in its field. Due to the disparate nature of the technologies involved in Systems Health Management (SHM), no single person can understand all aspects of the discipline; hence this book collates together in one te...
Άλλοι συγγραφείς: | |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Hoboken, N.J. :
Wiley,
2011.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Machine generated contents note: About the Editors List of Contributors Foreword Series Editor Preface Preface AcronymsPart One The Socio-technical Context of System Health Management Charles D. Mott1 The Theory of System Health Management Stephen B. Johnson Overview 1.1 Introduction 1.2 Functions, Off-Nominal States, and Causation 1.3 Complexity and Knowledge Limitations 1.4 SHM Mitigation Strategies 1.5 Operational Fault Management Functions 1.6 Mechanisms 1.7 Summary of Principles 1.8 SHM Implementation 1.9 Some Implications 1.10 Conclusion Bibliography2 Multimodal Communication Beverly A. Sauer Overview 2.1 Multimodal Communication in SHM 2.2 Communication Channels 2.3 Learning from Disaster 2.4 Current Communication in the Aerospace Industry 2.5 The Problem of Sense-making in SHM Communication 2.6 The Costs of Faulty Communication 2.7 Implications 2.8 Conclusion Acknowledgments Bibliography3 Highly Reliable Organizations Andrew Wiedlea Overview 3.1 The Study of HROs and Design for Dependability 3.2 Lessons from the Field: HRO Patterns of Behavior 3.3 Dependable Design, Organizational Behavior, and Connections to the HRO Project Bibliography4 Knowledge Management Edward W. Rogers Overview 4.1 Systems as Embedded Knowledge 4.2 KM and Information Technology 4.3 Reliability and Sustainability of Organizational Systems 4.4 Case Study of Building a Learning Organization: Goddard Space Flight Center 4.5 Conclusion Bibliography5 The Business Case for SHM Kirby Keller and James Poblete Overview 5.1 Business Case Processes and Tools 5.2 Metrics to Support the Decision Process 5.3 Factors to Consider in Developing an Enterprise Model 5.4 Evaluation of Alternatives 5.5 Modifications in Selected Baseline Model 5.6 Modeling Risk and Uncertainty 5.7 Model Verification and Validation 5.8 Evaluation Results 5.9 Summary and Conclusions BibliographyPart Two SHM and the System Lifecycle Seth S. Kessler6 Health Management Systems Engineering and Integration Timothy J. Wilmering and Charles D. Mott Overview 6.1 Introduction 6.2 Systems Thinking 6.3 Knowledge Management 6.4 Systems Engineering 6.5 Systems Engineering Lifecycle Stages 6.6 Systems Engineering, Dependability, and Health Management 6.7 SHM Lifecycle Stages 6.8 SHM Analysis Models and Tools 6.9 Summary Acknowledgments Bibliography7 Architecture Ryan W. Deal and Seth S. Kessler Overview 7.1 Introduction 7.2 SHM System Architecture Components 7.3 Examples of Power and Data Considerations 7.4 SHM System Architecture Characteristics 7.5 SHM System Architecture Advanced Concepts 7.6 Summary Bibliography8 System Design and Analysis Methods Irem Y. Tumer Overview 8.1 Introduction 8.2 Lifecycle Considerations 8.3 Design Methods and Practices for Effective SHM 8.4 Summary Acknowledgments Bibliography9 Assessing and Maturing Technology Readiness Levels Ryan M. Mackey Overview 9.1 Introduction 9.2 Motivating Maturity Assessment 9.3 Review of Technology Readiness Levels 9.4 Special Needs of SHM 9.5 Mitigation Approaches 9.6 TRLs for SHM 9.7 A Sample Maturation Effort 9.8 Summary Bibliography10 Verification and Validation Lawrence Z. Markosian, Martin S. Feather, and David E. Brinza Overview 10.1 Introduction 10.2 Existing Software V & V 10.3 Feasibility and Sufficiency of Existing Software V & V Practices for SHM.
- Note continued: 17.2.2. Trend-Based Evolutionary Approaches
- 17.2.3. Data-Driven Approaches
- 17.2.4. Particle Filtering
- 17.2.5. Physics-Based Modeling Approaches
- 17.3. Prognosis RUL Probability Density Function
- 17.4. Adaptive Prognosis
- 17.5. Performance Metrics
- 17.5.1. Accuracy
- 17.5.2. Precision
- 17.5.3. Convergence
- 17.6. Distributed Prognosis System Architecture
- 17.7. Conclusion
- Bibliography
- pt. Four OPERATIONS / Karl M. Reichard
- 18. Quality Assurance / Brian K. Hughitt
- Overview
- 18.1. NASA QA Policy Requirements
- 18.2. Quality System Criteria
- 18.3. Quality Clauses
- 18.4. Workmanship Standards
- 18.5. Government Contract Quality Assurance
- 18.6. Government Mandatory Inspection Points
- 18.7. Quality System Audit
- 18.8. Conclusion
- Bibliography
- 19. Maintainability: Theory and Practice / Gary O'Neill
- Overview
- 19.1. Definitions of Reliability and Maintainability
- 19.2. Reliability and Maintainability Engineering
- 19.3. The Practice of Maintainability
- 19.4. Improving R & M Measures
- 19.5. Conclusion
- Bibliography
- 20. Human Factors / Lilly Spirkovska
- Overview
- 20.1. Background
- 20.2. Fault Management on Next-Generation Spacecraft
- 20.3. Integrated Fault Management Automation Today
- 20.4. Human-Automation Teaming for Real-Time FM
- 20.4.1. Human-Machine Functional Allocation
- 20.4.2. Ensuring Crew Visibility in Automated Activities
- 20.4.3. Providing Crew Insight on System Summary Displays
- 20.5. Operations Concepts for Crew-Automation Teaming
- 20.6. Empirical Testing and Evaluation
- 20.7. Future Steps
- 20.8. Conclusion
- Bibliography
- 21. Launch Operations / Barbara L. Brown
- Overview
- 21.1. Introduction to Launch Site Operations
- 21.2. Human-Centered Health Management
- 21.2.1. Space Shuttle Turnaround Operations
- 21.2.2. International Space Station (ISS) Element Integrated Testing
- 21.2.3. Launch Pad Operations
- 21.2.4. Launch Countdown
- 21.2.5. Expendable Launch Vehicle Processing
- 21.3. SHM
- 21.3.1. Sensing
- 21.3.2. Integrated Data Environment
- 21.3.3. Configuration Data Automation
- 21.4. LS Abort and Emergency Egress
- 21.5. Future Trends Post Space Shuttle
- 21.6. Conclusion
- Bibliography
- 22. Fault Management Techniques in Human Spaceflight Operations / Alan Crocker
- Overview
- 22.1. The Flight Operations Team
- 22.2. System Architecture Implications
- 22.3. Operations Products, Processes and Techniques
- 22.4. Lessons Learned from Space Shuttle and ISS Experience
- 22.5. Conclusion
- Bibliography
- 23. Military Logistics / Karl M. Reichard
- Overview
- 23.1. Focused Logistics
- 23.2. USMC AL
- 23.3. Benefits and Impact of SHM on Military Operations and Logistics
- 23.4. Demonstrating the Value of SHM in Military Operations and Logistics
- 23.5. Conclusion
- Bibliography
- pt. Five Subsystem Health Management / Philip A. Scandura, Jr.
- 24. Aircraft Propulsion Health Management / Bruce Wood
- Overview
- 24.1. Introduction
- 24.2. Basic Principles
- 24.2.1. Module Performance Analysis
- 24.2.2. Engine Health Tracking
- 24.3. Engine-Hosted Health Management
- 24.3.1. Sensors
- 24.3.2. Engine Gas Path
- 24.4. Operating Conditions
- 24.4.1. Actuation
- 24.4.2. Mechanical Components
- 24.4.3. Vibration
- 24.4.4. Lubrication System
- 24.4.5. Turbo-machinery
- 24.4.6. Direct Blade Measures
- 24.4.7. Future
- 24.5.Computing Host
- 24.6. Software
- 24.6.1. FADEC Codes
- 24.6.2. Anomaly Detection
- 24.6.3. Information Fusion
- 24.6.4. Fault Isolation
- 24.7. On-Board Models
- 24.8.Component Life Usage Estimation
- 24.8.1. Traditional Component Lifing Methods
- 24.8.2. Advanced Component Life Usage Tracking
- 24.9. Design of an Engine Health Management System
- 24.9.1. Safety
- 24.9.2. Lifecycle Cost
- 24.10. Supporting a Layered Approach
- 24.11. Conclusion
- Bibliography
- 25. Intelligent Sensors for Health Management / Todd Hong
- Overview
- 25.1. Introduction
- 25.2. Sensor Technology Approaches
- 25.2.1. Ease of Application
- 25.2.2. Reliability
- 25.2.3. Redundancy and Cross-correlation
- 25.2.4. Orthogonality
- 25.3. Sensor System Development
- 25.3.1. Smart Sensors
- 25.3.2."Lick and Stick" Leak Sensor Technology
- 25.4. Supporting Technologies: High-Temperature Applications Example
- 25.5. Test Instrumentation and Non-destructive Evaluation (NDE)
- 25.6. Transition of Sensor Systems to Flight
- 25.6.1. Performance Considerations
- 25.6.2. Physical Considerations
- 25.6.3. Environmental Considerations
- 25.6.4. Safety and Reliability Considerations
- 25.7. Supporting a Layered Approach
- 25.8. Conclusion
- Acknowledgments
- Bibliography
- 26. Structural Health Monitoring / Yujun Kim
- Overview
- 26.1. Introduction
- 26.2. Proposed Framework
- 26.2.1. Impact Monitoring
- 26.2.2. Detection of Bolt Loosening in the TPS
- 26.2.3. Design of Built-In Structural Health Monitoring System
- 26.3. Supporting a Layered Approach
- 26.4. Conclusion
- Acknowledgments
- Bibliography
- 27. Electrical Power Health Management / Amy Chicatelli
- Overview
- 27.1. Introduction
- 27.2. Summary of Major EPS Components and their Failure Modes
- 27.2.1. Solar Arrays
- 27.2.2. Fuel Cells
- 27.2.3. Batteries
- 27.2.4. Flywheel Energy Storage
- 27.2.5. PMAD
- 27.3. Review of Current Power System HM
- 27.3.1. Hubble Space Telescope (HST)
- 27.3.2. International Space Station (ISS)
- 27.3.3. Space Shuttle
- 27.3.4. Aeronautics
- 27.4. Future Power SHM
- 27.4.1. Design Considerations
- 27.5. Supporting a Layered Approach
- 27.6. Conclusion
- Bibliography
- 28. Avionics Health Management / Edmund C. Baroth
- Overview
- 28.1. Avionics Description
- 28.1.1. Avionics Components
- 28.1.2. Avionics Architectures
- 28.1.3. Avionics Technology
- 28.2. Electrical, Electronic and Electromechanical (EEE) Parts Qualification
- 28.2.1.Commercial Grade
- 28.2.2. Industrial Grade
- 28.2.3. Military Grade
- 28.2.4. Space Grade
- 28.3. Environments
- 28.3.1. Environmental Parameters
- 28.4. Failure Sources
- 28.4.1. Design Faults
- 28.4.2. Material Defects
- 28.4.3. Fabrication Faults
- 28.5. Current Avionics Health Management Techniques
- 28.5.1. Scan Design/Built-In Self-test (BIST)
- 28.5.2. Error Detection and Correction (EDAC)
- 28.5.3. Boundary Scan
- 28.5.4. Voting
- 28.5.5. Idle Data Pattern Diagnosis
- 28.5.6. Input Protection
- 28.5.7. Module Test and Maintenance (MTM) Bus
- 28.5.8. Intelligent Sensors and Actuators
- 28.5.9. Avionics Systems
- 28.6. Avionics Health Management Requirements
- 28.6.1. Prognostic Health Management and Recovery
- 28.6.2. Anomaly and Failure Detection
- 28.6.3. Recovery
- 28.7. Supporting a Layered Approach
- 28.8. Conclusion
- Bibliography
- 29. Failure-Tolerant Architectures for Health Management / Priya Narasimhan
- Overview
- 29.1. Introduction
- 29.2. System Failure Response Stages
- 29.3. System-Level Approaches to Reliability
- 29.4. Failure-Tolerant Software Architectures for Space Missions
- 29.4.1. Generic Spacecraft
- 29.4.2. Defense Meteorological Satellite Program (DMSP)
- 29.4.3. Mars Pathfinder
- 29.5. Failure-Tolerant Software Architectures for Commercial Aviation Systems
- 29.5.1. Generic Aviation System
- 29.5.2. Airbus A330/A340/A380
- 29.5.3. Boeing 777
- 29.6. Observations and Trends
- 29.6.1.Commercial Off-the-Shelf Components
- 29.6.2."By-Wire" Software Control and Autonomy
- 29.6.3. Escalating Fault Sources and Evolving Redundancy
- 29.6.4. Domain-Specific Observations
- 29.7. Supporting a Layered Approach
- 29.8. Conclusion
- Acknowledgments
- Bibliography
- 30. Flight Control Health Management / Douglas J. Zimpfer
- Overview
- 30.1.A FC Perspective on System Health Management
- 30.1.1.Commercial Passenger Aircraft
- 30.1.2. Unmanned Aerial Vehicle
- 30.1.3. Spacecraft
- 30.1.4. Reusable Space Exploration Vehicle
- 30.2.
- Elements of the FC System
- 30.3. FC Sensor and Actuator HM
- 30.3.1. Sensor HM
- 30.3.2. Actuator HM
- 30.4. FC/Flight Dynamics HM
- 30.4.1. Navigation HM
- 30.4.2. Guidance HM
- 30.4.3. Control HM
- 30.5. FC HM Benefits
- 30.6. Supporting a Layered Approach
- 30.7. Conclusion
- Bibliography
- 31. Life Support Health Management / Eric-Jan Manders
- Overview
- 31.1. Introduction
- 31.1.1. Life Support Systems
- 31.2. Modeling
- 31.2.1. Physics-Based Modeling
- 31.2.2. Resource-Based Modeling
- 31.3. System Architecture
- 31.3.1. Behavior Monitors and Diagnoser
- 31.3.2. Failure-Adaptive Controller
- 31.3.3. Supervisory Controller
- 31.3.4. Resource Monitors
- 31.3.5. Planner and Scheduler
- 31.4. Future NASA Life Support Applications
- 31.4.1. Crew Exploration Vehicle
- 31.4.2. Lunar Habitats
- 31.4.3. Martian Habitats
- 31.5. Supporting a Layered Approach
- 31.6. Conclusion
- Bibliography
- 32. Software / Philip A. Scandura, Jr.
- Overview
- 32.1. Sampling of Accidents Attributed to Software Failures
- 32.2. Current Practice
- 32.2.1. Multi-Version Software
- 32.2.2. Recovery Block
- 32.2.3. Exception Handling
- 32.2.4. Data Capture Methods
- 32.3. Challenges
- 32.4. Supporting a Layered Approach
- 32.5. Conclusion
- Bibliography
- pt. Six SYSTEM APPLICATIONS / Thomas J. Gormley
- Note continued: 33. Launch Vehicle Health Management / Thomas J. Gormley
- Overview
- 33.1. Introduction
- 33.2. LVSHM Functionality and Scope
- 33.3. LV Terminology and Operations
- 33.4. LV Reliability Lessons Learned
- 33.5. LV Segment Requirements and Architecture
- 33.6. LVSHM Analysis and Design
- 33.6.1. LVSHM Analysis Process Overview
- 33.6.2. On-Vehicle LVSHM Design
- 33.6.3. On-Ground LVSHM Design
- 33.7. LV LVSHM System Descriptions
- 33.7.1. Evolved Expendable Launch Vehicle LVSHM
- 33.7.2. NASA Space Transportation System LVSHM
- 33.7.3. Advanced Reusable Launch Vehicle LVSHM Test Programs
- 33.8. LVSHM Future System Requirements
- 33.8.1. RLVs and Operationally Responsive Spacelift
- 33.8.2. Human-Rated Launch Vehicles
- 33.8.3. Allocation of LVSHM Functionality
- 33.8.4. Redundancy, Fault Tolerance, and Human Rating
- 33.9. Conclusion
- Bibliography. 34. Robotic Spacecraft Health Management / Paula S. Morgan
- Overview
- 34.1. Introduction
- 34.2. Spacecraft Health and Integrity Concerns for Deep-Space Missions
- 34.3. Spacecraft SHM Implementation Approaches
- 34.4. Standard FP Implementation
- 34.5. Robotic Spacecraft SHM Allocations
- 34.6. Spacecraft SHM Ground Rules and Requirements
- 34.7. SFP and SIFP Architectures
- 34.7.1. FP Monitor Structure
- 34.7.2. Example of Standard FP Application: Command Loss
- 34.7.3. Example of Standard FP Application: Under-voltage Trip
- 34.8. Conclusion
- Bibliography
- 35. Tactical Missile Health Management / Stephen A. Marotta
- Overview
- 35.1. Introduction
- 35.2. Stockpile Surveillance Findings
- 35.3. Probabilistic Prognostics Modeling
- 35.3.1. Stress and Strength Interference Method
- 35.3.2. Cumulative Damage Function Method
- 35.3.3. Weibull Service Life Prediction Method
- 35.4. Conclusion
- Bibliography
- 36. Strategic Missile Health Management / Gregory A. Ruderman
- Overview
- 36.1. Introduction
- 36.2. Fundamentals of Solid Rocket Motors
- 36.3. Motor Components
- 36.3.1. Cases
- 36.3.2. Propellant-Liner-Insulator System
- 36.4. Challenges for Strategic Rocket Health Management
- 36.4.1. Material Property Variation
- 36.4.2. Material Aging
- 36.4.3. Defects
- 36.5. State of the Art for Solid Rocket System Health Management (SHM)
- 36.5.1. State of the Art for Deployed SHM Systems
- 36.5.2. State of the Art in Laboratory SHM Demonstrations
- 36.6. Current Challenges Facing SRM SHM
- 36.6.1. SRM SHM Data Acquisition, Storage and Analysis
- 36.6.2. System Longevity and Reliability
- 36.6.3. Lack of Service Life Sensors
- 36.6.4. Business Case
- 36.7. Conclusion
- Bibliography
- 37. Rotorcraft Health Management / James J. Zakrajsek
- Overview
- 37.1. Introduction
- 37.2. Rotorcraft System Health Management Standard Practices
- 37.3. New Practices
- 37.4. Lessons Learned
- 37.5. Future Challenges
- 37.6. Conclusion
- Bibliography
- 38.Commercial Aviation Health Management / Gary Bird
- Overview
- 38.1.Commercial Aviation Challenge
- 38.2. Layered Approach to SHM
- 38.3. Evolution of Commercial Aviation SHM
- 38.3.1. First-Generation Systems
- 38.3.2. Second-Generation Systems
- 38.3.3. Third-Generation Systems
- 38.3.4. Fourth-Generation Systems
- 38.4.Commercial State of the Art
- 38.4.1. Primus Epic CMC
- 38.4.2. Boeing 787 Crew Information System/Maintenance System
- 38.5. The Next Generation: Intelligent Vehicles/Sense and Respond
- 38.5.1. Enabling the Shift to Sense and Respond Network-centric Operations
- 38.5.2. Barriers to Adoption
- 38.5.3. Next Steps
- 38.6. Conclusion
- Bibliography.