|
|
|
|
LEADER |
19632nam a2200829 4500 |
001 |
ocn757401381 |
003 |
OCoLC |
005 |
20170828023022.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
111017s2011 gw a ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d DG1
|d YDXCP
|d DEBSZ
|d CDX
|d E7B
|d OCLCQ
|d EBLCP
|d OCLCQ
|d B24X7
|d OCLCQ
|d COO
|d NLGGC
|d OCLCQ
|d DEBBG
|d DG1
|d LIP
|d GrThAP
|
019 |
|
|
|a 714799132
|
020 |
|
|
|a 9783527636303
|q (electronic bk.)
|
020 |
|
|
|a 3527636307
|q (electronic bk.)
|
020 |
|
|
|a 9783527636280
|q (electronic bk.)
|
020 |
|
|
|a 3527636285
|q (electronic bk.)
|
020 |
|
|
|a 9783527636297
|q (ePub)
|
020 |
|
|
|a 3527636293
|q (ePub)
|
020 |
|
|
|a 9783527636310
|q (Mobi)
|
020 |
|
|
|a 3527636315
|q (Mobi)
|
020 |
|
|
|z 3527410031
|
020 |
|
|
|z 9783527410033
|
029 |
1 |
|
|a AU@
|b 000047551147
|
029 |
1 |
|
|a DEBSZ
|b 347955517
|
029 |
1 |
|
|a DEBSZ
|b 372814980
|
029 |
1 |
|
|a DEBSZ
|b 430997469
|
029 |
1 |
|
|a NLGGC
|b 338323414
|
029 |
1 |
|
|a NZ1
|b 16077594
|
029 |
1 |
|
|a DEBBG
|b BV043393565
|
029 |
1 |
|
|a CHVBK
|b 480186219
|
029 |
1 |
|
|a CHNEW
|b 000938314
|
035 |
|
|
|a (OCoLC)757401381
|z (OCoLC)714799132
|
037 |
|
|
|a 10.1002/9783527636280
|b Wiley InterScience
|n http://www3.interscience.wiley.com
|
050 |
|
4 |
|a TK8322
|b .A38 2011eb
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 621.472
|2 22
|
049 |
|
|
|a MAIN
|
245 |
0 |
0 |
|a Advanced characterization techniques for thin film solar cells /
|c edited by Daniel Abou-Ras, Thomas Kirchartz, and Uwe Rau.
|
264 |
|
1 |
|a Weinheim, Germany :
|b Wiley-VCH,
|c [2011]
|
264 |
|
4 |
|c ©2011
|
300 |
|
|
|a 1 online resource (xxxvi, 547 pages) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|g Machine generated contents note:
|g pt. one
|t Introduction --
|g 1.
|t Introduction to Thin-Film Photovoltaics /
|r Uwe Rau --
|g 1.1.
|t Introduction --
|g 1.2.
|t The Photovoltaic Principle --
|g 1.2.1.
|t The Shockley-Queisser Theory --
|g 1.2.2.
|t From the Ideal Solar Cell to Real Solar Cells --
|g 1.2.3.
|t Light Absorption and Light Trapping --
|g 1.2.4.
|t Charge Extraction --
|g 1.2.5.
|t Nonradiative Recombination --
|g 1.3.
|t Functional Layers in Thin-Film Solar Cells --
|g 1.4.
|t Comparison of Various Thin-Film Solar-Cell Types --
|g 1.4.1.
|t Cu(In, Ga)Se2 --
|g 1.4.1.1.
|t Basic Properties and Technology --
|g 1.4.1.2.
|t Layer-Stacking Sequence and Band Diagram of the Heterostructure --
|g 1.4.2.
|t CdTe --
|g 1.4.2.1.
|t Basic Properties and Technology --
|g 1.4.2.2.
|t Layer-Stacking Sequence and Band Diagram of the Heterostructure --
|g 1.4.3.
|t Thin-Film Silicon Solar Cells --
|g 1.4.3.1.
|t Hydrogenated Amorphous Si (a-Si: H) --
|g 1.4.3.2.
|t Metastability in a-Si: H: The Staebler-Wronski Effect --
|g 1.4.3.3.
|t Hydrogenated Microcrystalline Silicon (& mu;c-Si: H) --
|g 1.4.3.4.
|t Micromorph Tandem Solar Cells.
|
505 |
0 |
0 |
|g 1.5.
|t Conclusions --
|t References --
|g pt. Two
|t Device Characterization --
|g 2.
|t Fundamental Electrical Characterization of Thin-Film Solar Cells /
|r Uwe Rau --
|g 2.1.
|t Introduction --
|g 2.2.
|t Current/Voltage Curves --
|g 2.2.1.
|t Shape of Current/Voltage Curves and their Description with Equivalent Circuit Models --
|g 2.2.2.
|t Measurement of Current/Voltage Curves --
|g 2.2.3.
|t Determination of Ideality Factors and Series Resistances --
|g 2.2.4.
|t Temperature-Dependent Current/Voltage Measurements --
|g 2.3.
|t Quantum Efficiency Measurements --
|g 2.3.1.
|t Definition --
|g 2.3.2.
|t Measurement Principle and Calibration --
|g 2.3.3.
|t Quantum Efficiency Measurements of Tandem Solar Cells --
|g 2.3.4.
|t Differential Spectral Response (DSR) Measurements --
|g 2.3.5.
|t Interpretation of Quantum Efficiency Measurements in Thin-Film Silicon Solar Cells --
|t References --
|g 3.
|t Electroluminescence Analysis of Solar Cells and Solar Modules /
|r Uwe Rau --
|g 3.1.
|t Introduction --
|g 3.2.
|t Basics --
|g 3.3.
|t Spectrally Resolved Electroluminescence --
|g 3.4.
|t Spatially Resolved Electroluminescence of c-Si Solar Cells --
|g 3.5.
|t Electroluminescence Imaging of Cu(In, Ga)Se2 Thin-Film Modules.
|
505 |
0 |
0 |
|g 3.6.
|t Modeling of Spatially Resolved Electroluminescence --
|t References --
|g 4.
|t Capacitance Spectroscopy of Thin-Film Solar Cells /
|r Pawel Zabierowski --
|g 4.1.
|t Introduction --
|g 4.2.
|t Admittance Basics --
|g 4.3.
|t Sample Requirements --
|g 4.4.
|t Instrumentation --
|g 4.5.
|t Capacitance-Voltage Profiling and the Depletion Approximation --
|g 4.6.
|t Admittance Response of Deep States --
|g 4.7.
|t The Influence of Deep States on CV Profiles --
|g 4.8.
|t DLTS --
|g 4.8.1.
|t DLTS of Thin-Film PV Devices --
|g 4.9.
|t Admittance Spectroscopy --
|g 4.10.
|t Drive Level Capacitance Profiling --
|g 4.11.
|t Photocapacitance --
|g 4.12.
|t The Meyer-Neldel Rule --
|g 4.13.
|t Spatial Inhomogeneities and Interface States --
|g 4.14.
|t Metastability --
|t References --
|g pt. Three
|t Materials Characterization --
|g 5.
|t Characterizing the Light-Trapping Properties of Textured Surfaces with Scanning Near-Field Optical Microscopy /
|r Karsten Bittkau --
|g 5.1.
|t Introduction --
|g 5.2.
|t How Does a Scanning Near-Field Optical Microscope Work? --
|g 5.3.
|t Light Scattering in the Wave Picture --
|g 5.4.
|t The Role of Evanescent Modes for Light Trapping --
|g 5.5.
|t Analysis of Scanning Near-Field Optical Microscopy Images by Fast Fourier Transformation.
|
505 |
0 |
0 |
|g 5.6.
|t How to Extract Far-Field Scattering Properties by Scanning Near-Field Optical Microscopy? --
|g 5.7.
|t Conclusion --
|t References --
|g 6.
|t Spectroscopic Ellipsometry /
|r Robert W. Collins --
|g 6.1.
|t Introduction --
|g 6.2.
|t Theory --
|g 6.2.1.
|t Polarized Light --
|g 6.2.2.
|t Reflection from a Single Interface --
|g 6.3.
|t Ellipsometry Instrumentation --
|g 6.3.1.
|t Rotating Analyzer SE for Ex-Situ Applications --
|g 6.3.2.
|t Rotating Compensator SE for Real-Time Applications --
|g 6.4.
|t Data Analysis --
|g 6.4.1.
|t Exact Numerical Inversion --
|g 6.4.2.
|t Least-Squares Regression --
|g 6.4.3.
|t Virtual Interface Analysis --
|g 6.5.
|t RTSE of Thin Film Photovoltaics --
|g 6.5.1.
|t Thin Si: H --
|g 6.5.2.
|t CdTe --
|g 6.5.3.
|t CuInSe2 --
|g 6.6.
|t Summary and Future --
|g 6.7.
|t Definition of Variables --
|t References --
|g 7.
|t Photoluminescence Analysis of Thin-Film Solar Cells /
|r Levent Gutay --
|g 7.1.
|t Introduction --
|g 7.2.
|t Experimental Issues --
|g 7.2.1.
|t Design of the Optical System --
|g 7.2.2.
|t Calibration --
|g 7.2.3.
|t Cryostat --
|g 7.3.
|t Basic Transitions --
|g 7.3.1.
|t Excitons --
|g 7.3.2.
|t Free-Bound Transitions --
|g 7.3.3.
|t Donor-Acceptor Pair Recombination --
|g 7.3.4.
|t Potential Fluctuations.
|
505 |
0 |
0 |
|g 7.3.5.
|t Band-Band Transitions --
|g 7.4.
|t Case Studies --
|g 7.4.1.
|t Low-Temperature Photoluminescence Analysis --
|g 7.4.2.
|t Room-Temperature Measurements: Estimation of Voc from PL Yield --
|g 7.4.3.
|t Spatially Resolved Photoluminescence: Absorber Inhomogeneities --
|t References --
|g 8.
|t Steady-State Photocarrier Crating Method /
|r Rudolf Bruggemann --
|g 8.1.
|t Introduction --
|g 8.2.
|t Basic Analysis of SSPG and Photocurrent Response --
|g 8.2.1.
|t Optical Model --
|g 8.2.2.
|t Semiconductor Equations --
|g 8.2.3.
|t Diffusion Length: Ritter-Zeldov-Weiser Analysis --
|g 8.2.3.1.
|t Evaluation Schemes --
|g 8.2.4.
|t More Detailed Analyses --
|g 8.2.4.1.
|t Influence of the Dark Conductivity --
|g 8.2.4.2.
|t Influence of Traps --
|g 8.2.4.3.
|t Minority-Carrier and Majority-Carrier Mobility-Lifetime Products --
|g 8.3.
|t Experimental Setup --
|g 8.4.
|t Data Analysis --
|g 8.5.
|t Results --
|g 8.5.1.
|t Hydrogenated Amorphous Silicon --
|g 8.5.1.1.
|t Temperature and Generation Rate Dependence --
|g 8.5.1.2.
|t Surface Recombination --
|g 8.5.1.3.
|t Electric-Field Influence --
|g 8.5.1.4.
|t Fermi-Level Position --
|g 8.5.1.5.
|t Defects and Light-Induced Degradation.
|
505 |
0 |
0 |
|g 8.5.1.6.
|t Thin-Film Characterization and Deposition Methods --
|g 8.5.2.
|t Hydrogenated Amorphous Silicon Alloys --
|g 8.5.3.
|t Hydrogenated Microcrystalline Silicon --
|g 8.5.4.
|t Hydrogenated Microcrystalline Germanium --
|g 8.5.5.
|t Other Thin-Film Semiconductors --
|g 8.6.
|t Density-of-States Determination --
|g 8.7.
|t Summary --
|t References --
|g 9.
|t Time-of-Flight Analysis /
|r Torsten Bronger --
|g 9.1.
|t Introduction --
|g 9.2.
|t Fundamentals of TOF Measurements --
|g 9.2.1.
|t Anomalous Dispersion --
|g 9.2.2.
|t Basic Electronic Properties of Thin-Film Semiconductors --
|g 9.3.
|t Experimental Details --
|g 9.3.1.
|t Accompanying Measurements --
|g 9.3.1.1.
|t Capacitance --
|g 9.3.1.2.
|t Collection --
|g 9.3.1.3.
|t Built-in Field --
|g 9.3.2.
|t Current Decay --
|g 9.3.3.
|t Charge Transient --
|g 9.3.4.
|t Possible Problems --
|g 9.3.4.1.
|t Dielectric Relaxation --
|g 9.3.5.
|t Inhomogeneous Field --
|g 9.4.
|t Analysis of TOF Results --
|g 9.4.1.
|t Multiple Trapping --
|g 9.4.1.1.
|t Overview of the Processes --
|g 9.4.1.2.
|t Energetic Distribution of Carriers --
|g 9.4.1.3.
|t Time Dependence of Electrical Current --
|g 9.4.2.
|t Spatial Charge Distribution --
|g 9.4.2.1.
|t Temperature Dependence.
|
505 |
0 |
0 |
|g 9.4.3.
|t Density of States --
|g 9.4.3.1.
|t Widths of Band Tails --
|g 9.4.3.2.
|t Probing of Deep States --
|t References --
|g 10.
|t Electron-Spin Resonance (ESR) in Hydrogenated Amorphous Silicon (a-Si: H) /
|r Jan Behrends --
|g 10.1.
|t Introduction --
|g 10.2.
|t Basics of ESR --
|g 10.3.
|t How to Measure ESR --
|g 10.3.1.
|t ESR Setup and Measurement Procedure --
|g 10.3.2.
|t Pulse ESR --
|g 10.3.3.
|t Sample Preparation --
|g 10.4.
|t The g Tensor and Hyperfine Interaction in Disordered Solids --
|g 10.4.1.
|t Zeeman Energy and g Tensor --
|g 10.4.2.
|t Hyperfine Interaction --
|g 10.4.3.
|t Line-Broadening Mechanisms --
|g 10.5.
|t Discussion of Selected Results --
|g 10.5.1.
|t ESR on Undoped a-Si: H --
|g 10.5.2.
|t LESR on Undoped a-Si: H --
|g 10.5.3.
|t ESR on Doped a-Si: H --
|g 10.5.4.
|t Light-Induced Degradation in a-Si: H --
|g 10.5.4.1.
|t Excess Charge-Carrier Recombination and Weak Si-Si Bond Breaking --
|g 10.5.4.2.
|t Si-H Bond Dissociation and Hydrogen Collision Model --
|g 10.5.4.3.
|t Transformation of Existing Nonparamagnetic Charged Dangling-Bond Defects --
|g 10.6.
|t Alternative ESR Detection --
|g 10.6.1.
|t History of EDMR --
|g 10.6.2.
|t EDMR on a-Si: H Solar Cells.
|
505 |
0 |
0 |
|g 10.7.
|t Concluding Remarks --
|t References --
|g 11.
|t Scanning Probe Microscopy on Inorganic Thin Films for Solar Cells /
|r Iris Visoly-Fisher --
|g 11.1.
|t Introduction --
|g 11.2.
|t Experimental Background --
|g 11.2.1.
|t Atomic Force Microscopy --
|g 11.2.1.1.
|t Contact Mode --
|g 11.2.1.2.
|t Noncontact Mode --
|g 11.2.2.
|t Conductive Atomic Force Microscopy --
|g 11.2.3.
|t Scanning Capacitance Microscopy --
|g 11.2.4.
|t Kelvin Probe Force Microscopy --
|g 11.2.5.
|t Scanning Tunneling Microscopy --
|g 11.2.6.
|t Issues of Sample Preparation --
|g 11.3.
|t Selected Applications --
|g 11.3.1.
|t Surface Homogeneity --
|g 11.3.2.
|t Grain Boundaries --
|g 11.3.3.
|t Cross-Sectional Studies --
|g 11.4.
|t Summary --
|t References --
|g 12.
|t Electron Microscopy on Thin Films for Solar Cells /
|r Sebastian S. Schmidt --
|g 12.1.
|t Introduction --
|g 12.2.
|t Scanning Electron Microscopy --
|g 12.2.1.
|t Imaging Techniques --
|g 12.2.2.
|t Electron Backscatter Diffraction --
|g 12.2.3.
|t Energy-Dispersive and Wavelength-Dispersive X-Ray Spectrometry --
|g 12.2.4.
|t Electron-Beam-Induced Current Measurements --
|g 12.2.4.1.
|t Electron-Beam Generation --
|g 12.2.4.2.
|t Charge-Carrier Collection in a Solar Cell.
|
505 |
0 |
0 |
|g 12.2.4.3.
|t Experimental Setups --
|g 12.2.4.4.
|t Critical Issues --
|g 12.2.5.
|t Cathodoluminescence --
|g 12.2.5.1.
|t Example: Spectrum Imaging of CdTe Thin Films --
|g 12.2.6.
|t Scanning Probe and Scanning-Probe Microscopy Integrated Platform --
|g 12.2.7.
|t Combination of Various Scanning Electron Microscopy Techniques --
|g 12.3.
|t Transmission Electron Microscopy --
|g 12.3.1.
|t Imaging Techniques --
|g 12.3.1.1.
|t Bright-Field and Dark-Field Imaging in the Conventional Mode --
|g 12.3.1.2.
|t High-Resolution Imaging in the Conventional Mode --
|g 12.3.1.3.
|t Imaging in the Scanning Mode Using an Annular Dark-Field Detector --
|g 12.3.2.
|t Electron Diffraction.
|
505 |
0 |
0 |
|g Note continued:
|g 12.3.2.1.
|t Selected-Area Electron Diffraction in the Conventional Mode --
|g 12.3.2.2.
|t Convergent-Beam Electron Diffraction in the Scanning Mode --
|g 12.3.3.
|t Electron Energy-Loss Spectrometry and Energy-Filtered Transmission Electron Microscopy --
|g 12.3.3.1.
|t Scattering Theory --
|g 12.3.3.2.
|t Experiment and Setup --
|g 12.3.3.3.
|t The Energy-Loss Spectrum --
|g 12.3.3.4.
|t Applications and Comparison with EDX Spectroscopy --
|g 12.3.4.
|t Off-Axis and In-Line Electron Holography --
|g 12.4.
|t Sample Preparation Techniques --
|g 12.4.1.
|t Preparation for Scanning Electron Microscopy --
|g 12.4.2.
|t Preparation for Transmission Electron Microscopy --
|t References --
|g 13.
|t X-Ray and Neutron Diffraction on Materials for Thin-Film Solar Cells /
|r Roland Mainz --
|g 13.1.
|t Introduction --
|g 13.2.
|t Diffraction of X-Rays and Neutron by Matter --
|g 13.3.
|t Neutron Powder Diffraction of Absorber Materials for Thin-Film Solar Cells --
|g 13.3.1.
|t Example: Investigation of Intrinsic Point Defects in Nonstoichiometric CuInSe2 by Neutron Diffraction.
|
505 |
0 |
0 |
|g 13.4.
|t Grazing Incidence X-Ray Diffraction (GIXRD) --
|g 13.5.
|t Energy Dispersive X-Ray Diffraction (EDXRD) --
|t References --
|g 14.
|t Raman Spectroscopy on Thin Films for Solar Cells /
|r Alejandro Perez-Rodriguez --
|g 14.1.
|t Introduction --
|g 14.2.
|t Fundamentals of Raman Spectroscopy --
|g 14.3.
|t Vibrational Modes in Crystalline Materials --
|g 14.4.
|t Experimental Considerations --
|g 14.4.1.
|t Laser Source --
|g 14.4.2.
|t Light Collection and Focusing Optics --
|g 14.4.3.
|t Spectroscopic Module --
|g 14.5.
|t Characterization of Thin-Film Photovoltaic Materials --
|g 14.5.1.
|t Identification of Crystalline Structures --
|g 14.5.2.
|t Evaluation of Film Crystallinity --
|g 14.5.3.
|t Chemical Analysis of Semiconducting Alloys --
|g 14.5.4.
|t Nanocrystalline and Amorphous Materials --
|g 14.5.5.
|t Evaluation of Stress --
|g 14.6.
|t Conclusions --
|t References --
|g 15.
|t Soft X-Ray and Electron Spectroscopy: A Unique "Tool Chest" to Characterize the Chemical and Electronic Properties of Surfaces and Interfaces /
|r Clemens Heske --
|g 15.1.
|t Introduction --
|g 15.2.
|t Characterization Techniques --
|g 15.3.
|t Probing the Chemical Surface Structure: Impact of Wet Chemical Treatments on Thin-Film Solar Cell Absorbers.
|
505 |
0 |
0 |
|g 15.4.
|t Probing the Electronic Surface and Interface Structure: Band Alignment in Thin-Film Solar Cells --
|g 15.5.
|t Summary --
|t References --
|g 16.
|t Elemental Distribution Profiling of Thin Films for Solar Cells /
|r Raquel Caballero --
|g 16.1.
|t Introduction --
|g 16.2.
|t Glow Discharge-Optical Emission (GD-OES) and Glow Discharge-Mass Spectroscopy (GD-MS) --
|g 16.2.1.
|t Principles --
|g 16.2.2.
|t Instrumentation --
|g 16.2.2.1.
|t Plasma Sources --
|g 16.2.2.2.
|t Plasma Conditions --
|g 16.2.2.3.
|t Detection of Optical Emission --
|g 16.2.2.4.
|t Mass Spectroscopy --
|g 16.2.3.
|t Quantification --
|g 16.2.3.1.
|t Glow Discharge-Optical Emission Spectroscopy --
|g 16.2.3.2.
|t Glow Discharge-Mass Spectroscopy --
|g 16.2.4.
|t Applications --
|g 16.2.4.1.
|t Glow Discharge-Optical Emission Spectroscopy --
|g 16.2.4.2.
|t Glow Discharge-Mass Spectroscopy --
|g 16.3.
|t Secondary Ion Mass Spectrometry (SIMS) --
|g 16.3.1.
|t Principle of the Method --
|g 16.3.2.
|t Data Analysis --
|g 16.3.3.
|t Quantification --
|g 16.3.4.
|t Applications for Solar Cells --
|g 16.4.
|t Auger Electron Spectroscopy (AES) --
|g 16.4.1.
|t Introduction --
|g 16.4.2.
|t The Auger Process --
|g 16.4.3.
|t Auger Electron Signals.
|
505 |
0 |
0 |
|g 16.4.4.
|t Instrumentation --
|g 16.4.5.
|t Auger Electron Signal Intensities and Quantification --
|g 16.4.6.
|t Quantification --
|g 16.4.7.
|t Application --
|g 16.5.
|t X-Ray Photoelectron Spectroscopy (XPS) --
|g 16.5.1.
|t Theoretical Principles --
|g 16.5.2.
|t Instrumentation --
|g 16.5.3.
|t Application to Thin Film Solar Cells --
|g 16.6.
|t Energy-Dispersive X-Ray Analysis on Fractured Cross Sections --
|g 16.6.1.
|t Basics on Energy-Dispersive X-Ray Spectrometry in a Scanning Electron Microscope --
|g 16.6.2.
|t Spatial Resolutions --
|g 16.6.3.
|t Applications --
|g 16.6.3.1.
|t Sample Preparation --
|t References --
|g 17.
|t Hydrogen Effusion Experiments /
|r Florian Einsele --
|g 17.1.
|t Introduction --
|g 17.2.
|t Experimental Setup --
|g 17.3.
|t Data Analysis --
|g 17.3.1.
|t Identification of Rate-Limiting Process --
|g 17.3.2.
|t Analysis of Diffusing Hydrogen Species from Hydrogen Effusion Measurements --
|g 17.3.3.
|t Analysis of H2 Surface Desorption --
|g 17.3.4.
|t Analysis of Diffusion-Limited Effusion --
|g 17.3.5.
|t Analysis of Effusion Spectra in Terms of Hydrogen Density of States --
|g 17.3.6.
|t Analysis of Film Microstructure by Effusion of Implanted Rare Gases.
|
505 |
0 |
0 |
|g 17.4.
|t Discussion of Selected Results --
|g 17.4.1.
|t Amorphous Silicon and Germanium Films --
|g 17.4.1.1.
|t Material Density versus Annealing and Hydrogen Content --
|g 17.4.1.2.
|t Effect of Doping on H Effusion --
|g 17.4.2.
|t Amorphous Silicon Alloys: Si-C --
|g 17.4.3.
|t Microcrystalline Silicon --
|g 17.4.4.
|t Zinc Oxide Films --
|g 17.5.
|t Comparison with Other Experiments --
|g 17.6.
|t Concluding Remarks --
|t References --
|g pt. Four
|t Materials and Device Modeling --
|g 18.
|t Ab-Initio Modeling of Defects in Semiconductors /
|r Johan Pohl --
|g 18.1.
|t Introduction --
|g 18.2.
|t Density Functional Theory and Methods --
|g 18.2.1.
|t Basis Sets --
|g 18.2.2.
|t Functionals for Exchange and Correlation --
|g 18.2.2.1.
|t Local Approximations --
|g 18.2.2.2.
|t Functionals Beyond LDA/GGA --
|g 18.3.
|t Methods Beyond DFT --
|g 18.4.
|t From Total Energies to Materials' Properties --
|g 18.5.
|t Ab-initio Characterization of Point Defects --
|g 18.5.1.
|t Thermodynamics of Point Defects --
|g 18.5.2.
|t Formation Energies from Ab-Initio Calculations --
|g 18.5.3.
|t Case study Point Defects in ZnO --
|g 18.6.
|t Conclusions --
|t References --
|g 19.
|t One-Dimensional Electro-Optical Simulations of Thin-Film Solar Cells /
|r Thomas Kirchartz.
|
505 |
0 |
0 |
|g 19.1.
|t Introduction --
|g 19.2.
|t Fundamentals --
|g 19.3.
|t Modeling Hydrogenated Amorphous and Microcrystalline Silicon --
|g 19.3.1.
|t Density of States and Transport Hydrogenated Amorphous Silicon --
|g 19.3.2.
|t Density of States and Transport Hydrogenated Microcrystalline Silicon --
|g 19.3.3.
|t Modeling Recombination in a-Si: H and & mu;c-Si: H --
|g 19.3.3.1.
|t Recombination Statistics for Single-Electron States: Shockley-Read-Hall Recombination --
|g 19.3.3.2.
|t Recombination Statistics for Amphoteric States --
|g 19.3.4.
|t Modeling Cu(In, Ga)Se2 Solar Cells --
|g 19.3.4.1.
|t Graded Band-Gap Devices --
|g 19.3.4.2.
|t Issues when Modeling Graded Band-Gap Devices --
|g 19.3.4.3.
|t Example --
|g 19.3.5.
|t Modeling of CdTe Solar Cells --
|g 19.3.5.1.
|t Baseline --
|g 19.3.5.2.
|t The & Phi;b -- NAc (Barrier-Doping) Trade-Off --
|g 19.3.5.3.
|t C-V Analysis as an Interpretation Aid of I-V Curves --
|g 19.4.
|t Optical Modeling of Thin Solar Cells --
|g 19.4.1.
|t Coherent Modeling of Flat Interfaces --
|g 19.4.2.
|t Modeling of Rough Interfaces --
|g 19.5.
|t Tools --
|g 19.5.1.
|t AFORS-HET --
|g 19.5.2.
|t AMPS-1D --
|g 19.5.3.
|t ASA --
|g 19.5.4.
|t PC1D --
|g 19.5.5.
|t SCAPS.
|
505 |
0 |
0 |
|g 19.5.6.
|t SC-SIMUL --
|t References --
|g 20.
|t Two- and Three-Dimensional Electronic Modeling of Thin-Film Solar Cells /
|r Wyatt K. Metzger --
|g 20.1.
|t Introduction --
|g 20.2.
|t Applications --
|g 20.3.
|t Methods --
|g 20.3.1.
|t Equivalent-Circuit Modeling --
|g 20.3.2.
|t Solving Semiconductor Equations --
|g 20.4.2.1.
|t Creating a Semiconductor Model --
|g 20.4.
|t Examples --
|g 20.4.1.
|t Equivalent-Circuit Modeling Examples --
|g 20.4.2.
|t Semiconductor Modeling Examples --
|g 20.5.
|t Summary --
|t References.
|
588 |
0 |
|
|a Print version record.
|
650 |
|
0 |
|a Photovoltaic cells
|x Materials
|x Research.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Rau, U.
|q (Uwe)
|4 edt
|
700 |
1 |
|
|a Abou-Ras, Daniel.
|4 edt
|
700 |
1 |
|
|a Kirchartz, Thomas.
|4 edt
|
776 |
0 |
8 |
|i Print version:
|t Advanced characterization techniques for thin film solar cells.
|d Weinheim, Germany : Wiley-VCH, ©2011
|z 3527410031
|w (OCoLC)676728907
|
856 |
4 |
0 |
|u https://doi.org/10.1002/9783527636280
|z Full Text via HEAL-Link
|
994 |
|
|
|a 92
|b DG1
|