Advanced characterization techniques for thin film solar cells /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Rau, U. (Uwe) (Επιμελητής έκδοσης), Abou-Ras, Daniel (Επιμελητής έκδοσης), Kirchartz, Thomas (Επιμελητής έκδοσης)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Weinheim, Germany : Wiley-VCH, [2011]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Machine generated contents note: pt. one Introduction
  • 1. Introduction to Thin-Film Photovoltaics / Uwe Rau
  • 1.1. Introduction
  • 1.2. The Photovoltaic Principle
  • 1.2.1. The Shockley-Queisser Theory
  • 1.2.2. From the Ideal Solar Cell to Real Solar Cells
  • 1.2.3. Light Absorption and Light Trapping
  • 1.2.4. Charge Extraction
  • 1.2.5. Nonradiative Recombination
  • 1.3. Functional Layers in Thin-Film Solar Cells
  • 1.4. Comparison of Various Thin-Film Solar-Cell Types
  • 1.4.1. Cu(In, Ga)Se2
  • 1.4.1.1. Basic Properties and Technology
  • 1.4.1.2. Layer-Stacking Sequence and Band Diagram of the Heterostructure
  • 1.4.2. CdTe
  • 1.4.2.1. Basic Properties and Technology
  • 1.4.2.2. Layer-Stacking Sequence and Band Diagram of the Heterostructure
  • 1.4.3. Thin-Film Silicon Solar Cells
  • 1.4.3.1. Hydrogenated Amorphous Si (a-Si: H)
  • 1.4.3.2. Metastability in a-Si: H: The Staebler-Wronski Effect
  • 1.4.3.3. Hydrogenated Microcrystalline Silicon (& mu;c-Si: H)
  • 1.4.3.4. Micromorph Tandem Solar Cells.
  • 1.5. Conclusions
  • References
  • pt. Two Device Characterization
  • 2. Fundamental Electrical Characterization of Thin-Film Solar Cells / Uwe Rau
  • 2.1. Introduction
  • 2.2. Current/Voltage Curves
  • 2.2.1. Shape of Current/Voltage Curves and their Description with Equivalent Circuit Models
  • 2.2.2. Measurement of Current/Voltage Curves
  • 2.2.3. Determination of Ideality Factors and Series Resistances
  • 2.2.4. Temperature-Dependent Current/Voltage Measurements
  • 2.3. Quantum Efficiency Measurements
  • 2.3.1. Definition
  • 2.3.2. Measurement Principle and Calibration
  • 2.3.3. Quantum Efficiency Measurements of Tandem Solar Cells
  • 2.3.4. Differential Spectral Response (DSR) Measurements
  • 2.3.5. Interpretation of Quantum Efficiency Measurements in Thin-Film Silicon Solar Cells
  • References
  • 3. Electroluminescence Analysis of Solar Cells and Solar Modules / Uwe Rau
  • 3.1. Introduction
  • 3.2. Basics
  • 3.3. Spectrally Resolved Electroluminescence
  • 3.4. Spatially Resolved Electroluminescence of c-Si Solar Cells
  • 3.5. Electroluminescence Imaging of Cu(In, Ga)Se2 Thin-Film Modules.
  • 3.6. Modeling of Spatially Resolved Electroluminescence
  • References
  • 4. Capacitance Spectroscopy of Thin-Film Solar Cells / Pawel Zabierowski
  • 4.1. Introduction
  • 4.2. Admittance Basics
  • 4.3. Sample Requirements
  • 4.4. Instrumentation
  • 4.5. Capacitance-Voltage Profiling and the Depletion Approximation
  • 4.6. Admittance Response of Deep States
  • 4.7. The Influence of Deep States on CV Profiles
  • 4.8. DLTS
  • 4.8.1. DLTS of Thin-Film PV Devices
  • 4.9. Admittance Spectroscopy
  • 4.10. Drive Level Capacitance Profiling
  • 4.11. Photocapacitance
  • 4.12. The Meyer-Neldel Rule
  • 4.13. Spatial Inhomogeneities and Interface States
  • 4.14. Metastability
  • References
  • pt. Three Materials Characterization
  • 5. Characterizing the Light-Trapping Properties of Textured Surfaces with Scanning Near-Field Optical Microscopy / Karsten Bittkau
  • 5.1. Introduction
  • 5.2. How Does a Scanning Near-Field Optical Microscope Work?
  • 5.3. Light Scattering in the Wave Picture
  • 5.4. The Role of Evanescent Modes for Light Trapping
  • 5.5. Analysis of Scanning Near-Field Optical Microscopy Images by Fast Fourier Transformation.
  • 5.6. How to Extract Far-Field Scattering Properties by Scanning Near-Field Optical Microscopy?
  • 5.7. Conclusion
  • References
  • 6. Spectroscopic Ellipsometry / Robert W. Collins
  • 6.1. Introduction
  • 6.2. Theory
  • 6.2.1. Polarized Light
  • 6.2.2. Reflection from a Single Interface
  • 6.3. Ellipsometry Instrumentation
  • 6.3.1. Rotating Analyzer SE for Ex-Situ Applications
  • 6.3.2. Rotating Compensator SE for Real-Time Applications
  • 6.4. Data Analysis
  • 6.4.1. Exact Numerical Inversion
  • 6.4.2. Least-Squares Regression
  • 6.4.3. Virtual Interface Analysis
  • 6.5. RTSE of Thin Film Photovoltaics
  • 6.5.1. Thin Si: H
  • 6.5.2. CdTe
  • 6.5.3. CuInSe2
  • 6.6. Summary and Future
  • 6.7. Definition of Variables
  • References
  • 7. Photoluminescence Analysis of Thin-Film Solar Cells / Levent Gutay
  • 7.1. Introduction
  • 7.2. Experimental Issues
  • 7.2.1. Design of the Optical System
  • 7.2.2. Calibration
  • 7.2.3. Cryostat
  • 7.3. Basic Transitions
  • 7.3.1. Excitons
  • 7.3.2. Free-Bound Transitions
  • 7.3.3. Donor-Acceptor Pair Recombination
  • 7.3.4. Potential Fluctuations.
  • 7.3.5. Band-Band Transitions
  • 7.4. Case Studies
  • 7.4.1. Low-Temperature Photoluminescence Analysis
  • 7.4.2. Room-Temperature Measurements: Estimation of Voc from PL Yield
  • 7.4.3. Spatially Resolved Photoluminescence: Absorber Inhomogeneities
  • References
  • 8. Steady-State Photocarrier Crating Method / Rudolf Bruggemann
  • 8.1. Introduction
  • 8.2. Basic Analysis of SSPG and Photocurrent Response
  • 8.2.1. Optical Model
  • 8.2.2. Semiconductor Equations
  • 8.2.3. Diffusion Length: Ritter-Zeldov-Weiser Analysis
  • 8.2.3.1. Evaluation Schemes
  • 8.2.4. More Detailed Analyses
  • 8.2.4.1. Influence of the Dark Conductivity
  • 8.2.4.2. Influence of Traps
  • 8.2.4.3. Minority-Carrier and Majority-Carrier Mobility-Lifetime Products
  • 8.3. Experimental Setup
  • 8.4. Data Analysis
  • 8.5. Results
  • 8.5.1. Hydrogenated Amorphous Silicon
  • 8.5.1.1. Temperature and Generation Rate Dependence
  • 8.5.1.2. Surface Recombination
  • 8.5.1.3. Electric-Field Influence
  • 8.5.1.4. Fermi-Level Position
  • 8.5.1.5. Defects and Light-Induced Degradation.
  • 8.5.1.6. Thin-Film Characterization and Deposition Methods
  • 8.5.2. Hydrogenated Amorphous Silicon Alloys
  • 8.5.3. Hydrogenated Microcrystalline Silicon
  • 8.5.4. Hydrogenated Microcrystalline Germanium
  • 8.5.5. Other Thin-Film Semiconductors
  • 8.6. Density-of-States Determination
  • 8.7. Summary
  • References
  • 9. Time-of-Flight Analysis / Torsten Bronger
  • 9.1. Introduction
  • 9.2. Fundamentals of TOF Measurements
  • 9.2.1. Anomalous Dispersion
  • 9.2.2. Basic Electronic Properties of Thin-Film Semiconductors
  • 9.3. Experimental Details
  • 9.3.1. Accompanying Measurements
  • 9.3.1.1. Capacitance
  • 9.3.1.2. Collection
  • 9.3.1.3. Built-in Field
  • 9.3.2. Current Decay
  • 9.3.3. Charge Transient
  • 9.3.4. Possible Problems
  • 9.3.4.1. Dielectric Relaxation
  • 9.3.5. Inhomogeneous Field
  • 9.4. Analysis of TOF Results
  • 9.4.1. Multiple Trapping
  • 9.4.1.1. Overview of the Processes
  • 9.4.1.2. Energetic Distribution of Carriers
  • 9.4.1.3. Time Dependence of Electrical Current
  • 9.4.2. Spatial Charge Distribution
  • 9.4.2.1. Temperature Dependence.
  • 9.4.3. Density of States
  • 9.4.3.1. Widths of Band Tails
  • 9.4.3.2. Probing of Deep States
  • References
  • 10. Electron-Spin Resonance (ESR) in Hydrogenated Amorphous Silicon (a-Si: H) / Jan Behrends
  • 10.1. Introduction
  • 10.2. Basics of ESR
  • 10.3. How to Measure ESR
  • 10.3.1. ESR Setup and Measurement Procedure
  • 10.3.2. Pulse ESR
  • 10.3.3. Sample Preparation
  • 10.4. The g Tensor and Hyperfine Interaction in Disordered Solids
  • 10.4.1. Zeeman Energy and g Tensor
  • 10.4.2. Hyperfine Interaction
  • 10.4.3. Line-Broadening Mechanisms
  • 10.5. Discussion of Selected Results
  • 10.5.1. ESR on Undoped a-Si: H
  • 10.5.2. LESR on Undoped a-Si: H
  • 10.5.3. ESR on Doped a-Si: H
  • 10.5.4. Light-Induced Degradation in a-Si: H
  • 10.5.4.1. Excess Charge-Carrier Recombination and Weak Si-Si Bond Breaking
  • 10.5.4.2. Si-H Bond Dissociation and Hydrogen Collision Model
  • 10.5.4.3. Transformation of Existing Nonparamagnetic Charged Dangling-Bond Defects
  • 10.6. Alternative ESR Detection
  • 10.6.1. History of EDMR
  • 10.6.2. EDMR on a-Si: H Solar Cells.
  • 10.7. Concluding Remarks
  • References
  • 11. Scanning Probe Microscopy on Inorganic Thin Films for Solar Cells / Iris Visoly-Fisher
  • 11.1. Introduction
  • 11.2. Experimental Background
  • 11.2.1. Atomic Force Microscopy
  • 11.2.1.1. Contact Mode
  • 11.2.1.2. Noncontact Mode
  • 11.2.2. Conductive Atomic Force Microscopy
  • 11.2.3. Scanning Capacitance Microscopy
  • 11.2.4. Kelvin Probe Force Microscopy
  • 11.2.5. Scanning Tunneling Microscopy
  • 11.2.6. Issues of Sample Preparation
  • 11.3. Selected Applications
  • 11.3.1. Surface Homogeneity
  • 11.3.2. Grain Boundaries
  • 11.3.3. Cross-Sectional Studies
  • 11.4. Summary
  • References
  • 12. Electron Microscopy on Thin Films for Solar Cells / Sebastian S. Schmidt
  • 12.1. Introduction
  • 12.2. Scanning Electron Microscopy
  • 12.2.1. Imaging Techniques
  • 12.2.2. Electron Backscatter Diffraction
  • 12.2.3. Energy-Dispersive and Wavelength-Dispersive X-Ray Spectrometry
  • 12.2.4. Electron-Beam-Induced Current Measurements
  • 12.2.4.1. Electron-Beam Generation
  • 12.2.4.2. Charge-Carrier Collection in a Solar Cell.
  • 12.2.4.3. Experimental Setups
  • 12.2.4.4. Critical Issues
  • 12.2.5. Cathodoluminescence
  • 12.2.5.1. Example: Spectrum Imaging of CdTe Thin Films
  • 12.2.6. Scanning Probe and Scanning-Probe Microscopy Integrated Platform
  • 12.2.7. Combination of Various Scanning Electron Microscopy Techniques
  • 12.3. Transmission Electron Microscopy
  • 12.3.1. Imaging Techniques
  • 12.3.1.1. Bright-Field and Dark-Field Imaging in the Conventional Mode
  • 12.3.1.2. High-Resolution Imaging in the Conventional Mode
  • 12.3.1.3. Imaging in the Scanning Mode Using an Annular Dark-Field Detector
  • 12.3.2. Electron Diffraction.
  • Note continued: 12.3.2.1. Selected-Area Electron Diffraction in the Conventional Mode
  • 12.3.2.2. Convergent-Beam Electron Diffraction in the Scanning Mode
  • 12.3.3. Electron Energy-Loss Spectrometry and Energy-Filtered Transmission Electron Microscopy
  • 12.3.3.1. Scattering Theory
  • 12.3.3.2. Experiment and Setup
  • 12.3.3.3. The Energy-Loss Spectrum
  • 12.3.3.4. Applications and Comparison with EDX Spectroscopy
  • 12.3.4. Off-Axis and In-Line Electron Holography
  • 12.4. Sample Preparation Techniques
  • 12.4.1. Preparation for Scanning Electron Microscopy
  • 12.4.2. Preparation for Transmission Electron Microscopy
  • References
  • 13. X-Ray and Neutron Diffraction on Materials for Thin-Film Solar Cells / Roland Mainz
  • 13.1. Introduction
  • 13.2. Diffraction of X-Rays and Neutron by Matter
  • 13.3. Neutron Powder Diffraction of Absorber Materials for Thin-Film Solar Cells
  • 13.3.1. Example: Investigation of Intrinsic Point Defects in Nonstoichiometric CuInSe2 by Neutron Diffraction.
  • 13.4. Grazing Incidence X-Ray Diffraction (GIXRD)
  • 13.5. Energy Dispersive X-Ray Diffraction (EDXRD)
  • References
  • 14. Raman Spectroscopy on Thin Films for Solar Cells / Alejandro Perez-Rodriguez
  • 14.1. Introduction
  • 14.2. Fundamentals of Raman Spectroscopy
  • 14.3. Vibrational Modes in Crystalline Materials
  • 14.4. Experimental Considerations
  • 14.4.1. Laser Source
  • 14.4.2. Light Collection and Focusing Optics
  • 14.4.3. Spectroscopic Module
  • 14.5. Characterization of Thin-Film Photovoltaic Materials
  • 14.5.1. Identification of Crystalline Structures
  • 14.5.2. Evaluation of Film Crystallinity
  • 14.5.3. Chemical Analysis of Semiconducting Alloys
  • 14.5.4. Nanocrystalline and Amorphous Materials
  • 14.5.5. Evaluation of Stress
  • 14.6. Conclusions
  • References
  • 15. Soft X-Ray and Electron Spectroscopy: A Unique "Tool Chest" to Characterize the Chemical and Electronic Properties of Surfaces and Interfaces / Clemens Heske
  • 15.1. Introduction
  • 15.2. Characterization Techniques
  • 15.3. Probing the Chemical Surface Structure: Impact of Wet Chemical Treatments on Thin-Film Solar Cell Absorbers.
  • 15.4. Probing the Electronic Surface and Interface Structure: Band Alignment in Thin-Film Solar Cells
  • 15.5. Summary
  • References
  • 16. Elemental Distribution Profiling of Thin Films for Solar Cells / Raquel Caballero
  • 16.1. Introduction
  • 16.2. Glow Discharge-Optical Emission (GD-OES) and Glow Discharge-Mass Spectroscopy (GD-MS)
  • 16.2.1. Principles
  • 16.2.2. Instrumentation
  • 16.2.2.1. Plasma Sources
  • 16.2.2.2. Plasma Conditions
  • 16.2.2.3. Detection of Optical Emission
  • 16.2.2.4. Mass Spectroscopy
  • 16.2.3. Quantification
  • 16.2.3.1. Glow Discharge-Optical Emission Spectroscopy
  • 16.2.3.2. Glow Discharge-Mass Spectroscopy
  • 16.2.4. Applications
  • 16.2.4.1. Glow Discharge-Optical Emission Spectroscopy
  • 16.2.4.2. Glow Discharge-Mass Spectroscopy
  • 16.3. Secondary Ion Mass Spectrometry (SIMS)
  • 16.3.1. Principle of the Method
  • 16.3.2. Data Analysis
  • 16.3.3. Quantification
  • 16.3.4. Applications for Solar Cells
  • 16.4. Auger Electron Spectroscopy (AES)
  • 16.4.1. Introduction
  • 16.4.2. The Auger Process
  • 16.4.3. Auger Electron Signals.
  • 16.4.4. Instrumentation
  • 16.4.5. Auger Electron Signal Intensities and Quantification
  • 16.4.6. Quantification
  • 16.4.7. Application
  • 16.5. X-Ray Photoelectron Spectroscopy (XPS)
  • 16.5.1. Theoretical Principles
  • 16.5.2. Instrumentation
  • 16.5.3. Application to Thin Film Solar Cells
  • 16.6. Energy-Dispersive X-Ray Analysis on Fractured Cross Sections
  • 16.6.1. Basics on Energy-Dispersive X-Ray Spectrometry in a Scanning Electron Microscope
  • 16.6.2. Spatial Resolutions
  • 16.6.3. Applications
  • 16.6.3.1. Sample Preparation
  • References
  • 17. Hydrogen Effusion Experiments / Florian Einsele
  • 17.1. Introduction
  • 17.2. Experimental Setup
  • 17.3. Data Analysis
  • 17.3.1. Identification of Rate-Limiting Process
  • 17.3.2. Analysis of Diffusing Hydrogen Species from Hydrogen Effusion Measurements
  • 17.3.3. Analysis of H2 Surface Desorption
  • 17.3.4. Analysis of Diffusion-Limited Effusion
  • 17.3.5. Analysis of Effusion Spectra in Terms of Hydrogen Density of States
  • 17.3.6. Analysis of Film Microstructure by Effusion of Implanted Rare Gases.
  • 17.4. Discussion of Selected Results
  • 17.4.1. Amorphous Silicon and Germanium Films
  • 17.4.1.1. Material Density versus Annealing and Hydrogen Content
  • 17.4.1.2. Effect of Doping on H Effusion
  • 17.4.2. Amorphous Silicon Alloys: Si-C
  • 17.4.3. Microcrystalline Silicon
  • 17.4.4. Zinc Oxide Films
  • 17.5. Comparison with Other Experiments
  • 17.6. Concluding Remarks
  • References
  • pt. Four Materials and Device Modeling
  • 18. Ab-Initio Modeling of Defects in Semiconductors / Johan Pohl
  • 18.1. Introduction
  • 18.2. Density Functional Theory and Methods
  • 18.2.1. Basis Sets
  • 18.2.2. Functionals for Exchange and Correlation
  • 18.2.2.1. Local Approximations
  • 18.2.2.2. Functionals Beyond LDA/GGA
  • 18.3. Methods Beyond DFT
  • 18.4. From Total Energies to Materials' Properties
  • 18.5. Ab-initio Characterization of Point Defects
  • 18.5.1. Thermodynamics of Point Defects
  • 18.5.2. Formation Energies from Ab-Initio Calculations
  • 18.5.3. Case study Point Defects in ZnO
  • 18.6. Conclusions
  • References
  • 19. One-Dimensional Electro-Optical Simulations of Thin-Film Solar Cells / Thomas Kirchartz.
  • 19.1. Introduction
  • 19.2. Fundamentals
  • 19.3. Modeling Hydrogenated Amorphous and Microcrystalline Silicon
  • 19.3.1. Density of States and Transport Hydrogenated Amorphous Silicon
  • 19.3.2. Density of States and Transport Hydrogenated Microcrystalline Silicon
  • 19.3.3. Modeling Recombination in a-Si: H and & mu;c-Si: H
  • 19.3.3.1. Recombination Statistics for Single-Electron States: Shockley-Read-Hall Recombination
  • 19.3.3.2. Recombination Statistics for Amphoteric States
  • 19.3.4. Modeling Cu(In, Ga)Se2 Solar Cells
  • 19.3.4.1. Graded Band-Gap Devices
  • 19.3.4.2. Issues when Modeling Graded Band-Gap Devices
  • 19.3.4.3. Example
  • 19.3.5. Modeling of CdTe Solar Cells
  • 19.3.5.1. Baseline
  • 19.3.5.2. The & Phi;b
  • NAc (Barrier-Doping) Trade-Off
  • 19.3.5.3. C-V Analysis as an Interpretation Aid of I-V Curves
  • 19.4. Optical Modeling of Thin Solar Cells
  • 19.4.1. Coherent Modeling of Flat Interfaces
  • 19.4.2. Modeling of Rough Interfaces
  • 19.5. Tools
  • 19.5.1. AFORS-HET
  • 19.5.2. AMPS-1D
  • 19.5.3. ASA
  • 19.5.4. PC1D
  • 19.5.5. SCAPS.
  • 19.5.6. SC-SIMUL
  • References
  • 20. Two- and Three-Dimensional Electronic Modeling of Thin-Film Solar Cells / Wyatt K. Metzger
  • 20.1. Introduction
  • 20.2. Applications
  • 20.3. Methods
  • 20.3.1. Equivalent-Circuit Modeling
  • 20.3.2. Solving Semiconductor Equations
  • 20.4.2.1. Creating a Semiconductor Model
  • 20.4. Examples
  • 20.4.1. Equivalent-Circuit Modeling Examples
  • 20.4.2. Semiconductor Modeling Examples
  • 20.5. Summary
  • References.