Advanced characterization techniques for thin film solar cells /
Άλλοι συγγραφείς: | , , |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Weinheim, Germany :
Wiley-VCH,
[2011]
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Machine generated contents note: pt. one Introduction
- 1. Introduction to Thin-Film Photovoltaics / Uwe Rau
- 1.1. Introduction
- 1.2. The Photovoltaic Principle
- 1.2.1. The Shockley-Queisser Theory
- 1.2.2. From the Ideal Solar Cell to Real Solar Cells
- 1.2.3. Light Absorption and Light Trapping
- 1.2.4. Charge Extraction
- 1.2.5. Nonradiative Recombination
- 1.3. Functional Layers in Thin-Film Solar Cells
- 1.4. Comparison of Various Thin-Film Solar-Cell Types
- 1.4.1. Cu(In, Ga)Se2
- 1.4.1.1. Basic Properties and Technology
- 1.4.1.2. Layer-Stacking Sequence and Band Diagram of the Heterostructure
- 1.4.2. CdTe
- 1.4.2.1. Basic Properties and Technology
- 1.4.2.2. Layer-Stacking Sequence and Band Diagram of the Heterostructure
- 1.4.3. Thin-Film Silicon Solar Cells
- 1.4.3.1. Hydrogenated Amorphous Si (a-Si: H)
- 1.4.3.2. Metastability in a-Si: H: The Staebler-Wronski Effect
- 1.4.3.3. Hydrogenated Microcrystalline Silicon (& mu;c-Si: H)
- 1.4.3.4. Micromorph Tandem Solar Cells.
- 1.5. Conclusions
- References
- pt. Two Device Characterization
- 2. Fundamental Electrical Characterization of Thin-Film Solar Cells / Uwe Rau
- 2.1. Introduction
- 2.2. Current/Voltage Curves
- 2.2.1. Shape of Current/Voltage Curves and their Description with Equivalent Circuit Models
- 2.2.2. Measurement of Current/Voltage Curves
- 2.2.3. Determination of Ideality Factors and Series Resistances
- 2.2.4. Temperature-Dependent Current/Voltage Measurements
- 2.3. Quantum Efficiency Measurements
- 2.3.1. Definition
- 2.3.2. Measurement Principle and Calibration
- 2.3.3. Quantum Efficiency Measurements of Tandem Solar Cells
- 2.3.4. Differential Spectral Response (DSR) Measurements
- 2.3.5. Interpretation of Quantum Efficiency Measurements in Thin-Film Silicon Solar Cells
- References
- 3. Electroluminescence Analysis of Solar Cells and Solar Modules / Uwe Rau
- 3.1. Introduction
- 3.2. Basics
- 3.3. Spectrally Resolved Electroluminescence
- 3.4. Spatially Resolved Electroluminescence of c-Si Solar Cells
- 3.5. Electroluminescence Imaging of Cu(In, Ga)Se2 Thin-Film Modules.
- 3.6. Modeling of Spatially Resolved Electroluminescence
- References
- 4. Capacitance Spectroscopy of Thin-Film Solar Cells / Pawel Zabierowski
- 4.1. Introduction
- 4.2. Admittance Basics
- 4.3. Sample Requirements
- 4.4. Instrumentation
- 4.5. Capacitance-Voltage Profiling and the Depletion Approximation
- 4.6. Admittance Response of Deep States
- 4.7. The Influence of Deep States on CV Profiles
- 4.8. DLTS
- 4.8.1. DLTS of Thin-Film PV Devices
- 4.9. Admittance Spectroscopy
- 4.10. Drive Level Capacitance Profiling
- 4.11. Photocapacitance
- 4.12. The Meyer-Neldel Rule
- 4.13. Spatial Inhomogeneities and Interface States
- 4.14. Metastability
- References
- pt. Three Materials Characterization
- 5. Characterizing the Light-Trapping Properties of Textured Surfaces with Scanning Near-Field Optical Microscopy / Karsten Bittkau
- 5.1. Introduction
- 5.2. How Does a Scanning Near-Field Optical Microscope Work?
- 5.3. Light Scattering in the Wave Picture
- 5.4. The Role of Evanescent Modes for Light Trapping
- 5.5. Analysis of Scanning Near-Field Optical Microscopy Images by Fast Fourier Transformation.
- 5.6. How to Extract Far-Field Scattering Properties by Scanning Near-Field Optical Microscopy?
- 5.7. Conclusion
- References
- 6. Spectroscopic Ellipsometry / Robert W. Collins
- 6.1. Introduction
- 6.2. Theory
- 6.2.1. Polarized Light
- 6.2.2. Reflection from a Single Interface
- 6.3. Ellipsometry Instrumentation
- 6.3.1. Rotating Analyzer SE for Ex-Situ Applications
- 6.3.2. Rotating Compensator SE for Real-Time Applications
- 6.4. Data Analysis
- 6.4.1. Exact Numerical Inversion
- 6.4.2. Least-Squares Regression
- 6.4.3. Virtual Interface Analysis
- 6.5. RTSE of Thin Film Photovoltaics
- 6.5.1. Thin Si: H
- 6.5.2. CdTe
- 6.5.3. CuInSe2
- 6.6. Summary and Future
- 6.7. Definition of Variables
- References
- 7. Photoluminescence Analysis of Thin-Film Solar Cells / Levent Gutay
- 7.1. Introduction
- 7.2. Experimental Issues
- 7.2.1. Design of the Optical System
- 7.2.2. Calibration
- 7.2.3. Cryostat
- 7.3. Basic Transitions
- 7.3.1. Excitons
- 7.3.2. Free-Bound Transitions
- 7.3.3. Donor-Acceptor Pair Recombination
- 7.3.4. Potential Fluctuations.
- 7.3.5. Band-Band Transitions
- 7.4. Case Studies
- 7.4.1. Low-Temperature Photoluminescence Analysis
- 7.4.2. Room-Temperature Measurements: Estimation of Voc from PL Yield
- 7.4.3. Spatially Resolved Photoluminescence: Absorber Inhomogeneities
- References
- 8. Steady-State Photocarrier Crating Method / Rudolf Bruggemann
- 8.1. Introduction
- 8.2. Basic Analysis of SSPG and Photocurrent Response
- 8.2.1. Optical Model
- 8.2.2. Semiconductor Equations
- 8.2.3. Diffusion Length: Ritter-Zeldov-Weiser Analysis
- 8.2.3.1. Evaluation Schemes
- 8.2.4. More Detailed Analyses
- 8.2.4.1. Influence of the Dark Conductivity
- 8.2.4.2. Influence of Traps
- 8.2.4.3. Minority-Carrier and Majority-Carrier Mobility-Lifetime Products
- 8.3. Experimental Setup
- 8.4. Data Analysis
- 8.5. Results
- 8.5.1. Hydrogenated Amorphous Silicon
- 8.5.1.1. Temperature and Generation Rate Dependence
- 8.5.1.2. Surface Recombination
- 8.5.1.3. Electric-Field Influence
- 8.5.1.4. Fermi-Level Position
- 8.5.1.5. Defects and Light-Induced Degradation.
- 8.5.1.6. Thin-Film Characterization and Deposition Methods
- 8.5.2. Hydrogenated Amorphous Silicon Alloys
- 8.5.3. Hydrogenated Microcrystalline Silicon
- 8.5.4. Hydrogenated Microcrystalline Germanium
- 8.5.5. Other Thin-Film Semiconductors
- 8.6. Density-of-States Determination
- 8.7. Summary
- References
- 9. Time-of-Flight Analysis / Torsten Bronger
- 9.1. Introduction
- 9.2. Fundamentals of TOF Measurements
- 9.2.1. Anomalous Dispersion
- 9.2.2. Basic Electronic Properties of Thin-Film Semiconductors
- 9.3. Experimental Details
- 9.3.1. Accompanying Measurements
- 9.3.1.1. Capacitance
- 9.3.1.2. Collection
- 9.3.1.3. Built-in Field
- 9.3.2. Current Decay
- 9.3.3. Charge Transient
- 9.3.4. Possible Problems
- 9.3.4.1. Dielectric Relaxation
- 9.3.5. Inhomogeneous Field
- 9.4. Analysis of TOF Results
- 9.4.1. Multiple Trapping
- 9.4.1.1. Overview of the Processes
- 9.4.1.2. Energetic Distribution of Carriers
- 9.4.1.3. Time Dependence of Electrical Current
- 9.4.2. Spatial Charge Distribution
- 9.4.2.1. Temperature Dependence.
- 9.4.3. Density of States
- 9.4.3.1. Widths of Band Tails
- 9.4.3.2. Probing of Deep States
- References
- 10. Electron-Spin Resonance (ESR) in Hydrogenated Amorphous Silicon (a-Si: H) / Jan Behrends
- 10.1. Introduction
- 10.2. Basics of ESR
- 10.3. How to Measure ESR
- 10.3.1. ESR Setup and Measurement Procedure
- 10.3.2. Pulse ESR
- 10.3.3. Sample Preparation
- 10.4. The g Tensor and Hyperfine Interaction in Disordered Solids
- 10.4.1. Zeeman Energy and g Tensor
- 10.4.2. Hyperfine Interaction
- 10.4.3. Line-Broadening Mechanisms
- 10.5. Discussion of Selected Results
- 10.5.1. ESR on Undoped a-Si: H
- 10.5.2. LESR on Undoped a-Si: H
- 10.5.3. ESR on Doped a-Si: H
- 10.5.4. Light-Induced Degradation in a-Si: H
- 10.5.4.1. Excess Charge-Carrier Recombination and Weak Si-Si Bond Breaking
- 10.5.4.2. Si-H Bond Dissociation and Hydrogen Collision Model
- 10.5.4.3. Transformation of Existing Nonparamagnetic Charged Dangling-Bond Defects
- 10.6. Alternative ESR Detection
- 10.6.1. History of EDMR
- 10.6.2. EDMR on a-Si: H Solar Cells.
- 10.7. Concluding Remarks
- References
- 11. Scanning Probe Microscopy on Inorganic Thin Films for Solar Cells / Iris Visoly-Fisher
- 11.1. Introduction
- 11.2. Experimental Background
- 11.2.1. Atomic Force Microscopy
- 11.2.1.1. Contact Mode
- 11.2.1.2. Noncontact Mode
- 11.2.2. Conductive Atomic Force Microscopy
- 11.2.3. Scanning Capacitance Microscopy
- 11.2.4. Kelvin Probe Force Microscopy
- 11.2.5. Scanning Tunneling Microscopy
- 11.2.6. Issues of Sample Preparation
- 11.3. Selected Applications
- 11.3.1. Surface Homogeneity
- 11.3.2. Grain Boundaries
- 11.3.3. Cross-Sectional Studies
- 11.4. Summary
- References
- 12. Electron Microscopy on Thin Films for Solar Cells / Sebastian S. Schmidt
- 12.1. Introduction
- 12.2. Scanning Electron Microscopy
- 12.2.1. Imaging Techniques
- 12.2.2. Electron Backscatter Diffraction
- 12.2.3. Energy-Dispersive and Wavelength-Dispersive X-Ray Spectrometry
- 12.2.4. Electron-Beam-Induced Current Measurements
- 12.2.4.1. Electron-Beam Generation
- 12.2.4.2. Charge-Carrier Collection in a Solar Cell.
- 12.2.4.3. Experimental Setups
- 12.2.4.4. Critical Issues
- 12.2.5. Cathodoluminescence
- 12.2.5.1. Example: Spectrum Imaging of CdTe Thin Films
- 12.2.6. Scanning Probe and Scanning-Probe Microscopy Integrated Platform
- 12.2.7. Combination of Various Scanning Electron Microscopy Techniques
- 12.3. Transmission Electron Microscopy
- 12.3.1. Imaging Techniques
- 12.3.1.1. Bright-Field and Dark-Field Imaging in the Conventional Mode
- 12.3.1.2. High-Resolution Imaging in the Conventional Mode
- 12.3.1.3. Imaging in the Scanning Mode Using an Annular Dark-Field Detector
- 12.3.2. Electron Diffraction.
- Note continued: 12.3.2.1. Selected-Area Electron Diffraction in the Conventional Mode
- 12.3.2.2. Convergent-Beam Electron Diffraction in the Scanning Mode
- 12.3.3. Electron Energy-Loss Spectrometry and Energy-Filtered Transmission Electron Microscopy
- 12.3.3.1. Scattering Theory
- 12.3.3.2. Experiment and Setup
- 12.3.3.3. The Energy-Loss Spectrum
- 12.3.3.4. Applications and Comparison with EDX Spectroscopy
- 12.3.4. Off-Axis and In-Line Electron Holography
- 12.4. Sample Preparation Techniques
- 12.4.1. Preparation for Scanning Electron Microscopy
- 12.4.2. Preparation for Transmission Electron Microscopy
- References
- 13. X-Ray and Neutron Diffraction on Materials for Thin-Film Solar Cells / Roland Mainz
- 13.1. Introduction
- 13.2. Diffraction of X-Rays and Neutron by Matter
- 13.3. Neutron Powder Diffraction of Absorber Materials for Thin-Film Solar Cells
- 13.3.1. Example: Investigation of Intrinsic Point Defects in Nonstoichiometric CuInSe2 by Neutron Diffraction.
- 13.4. Grazing Incidence X-Ray Diffraction (GIXRD)
- 13.5. Energy Dispersive X-Ray Diffraction (EDXRD)
- References
- 14. Raman Spectroscopy on Thin Films for Solar Cells / Alejandro Perez-Rodriguez
- 14.1. Introduction
- 14.2. Fundamentals of Raman Spectroscopy
- 14.3. Vibrational Modes in Crystalline Materials
- 14.4. Experimental Considerations
- 14.4.1. Laser Source
- 14.4.2. Light Collection and Focusing Optics
- 14.4.3. Spectroscopic Module
- 14.5. Characterization of Thin-Film Photovoltaic Materials
- 14.5.1. Identification of Crystalline Structures
- 14.5.2. Evaluation of Film Crystallinity
- 14.5.3. Chemical Analysis of Semiconducting Alloys
- 14.5.4. Nanocrystalline and Amorphous Materials
- 14.5.5. Evaluation of Stress
- 14.6. Conclusions
- References
- 15. Soft X-Ray and Electron Spectroscopy: A Unique "Tool Chest" to Characterize the Chemical and Electronic Properties of Surfaces and Interfaces / Clemens Heske
- 15.1. Introduction
- 15.2. Characterization Techniques
- 15.3. Probing the Chemical Surface Structure: Impact of Wet Chemical Treatments on Thin-Film Solar Cell Absorbers.
- 15.4. Probing the Electronic Surface and Interface Structure: Band Alignment in Thin-Film Solar Cells
- 15.5. Summary
- References
- 16. Elemental Distribution Profiling of Thin Films for Solar Cells / Raquel Caballero
- 16.1. Introduction
- 16.2. Glow Discharge-Optical Emission (GD-OES) and Glow Discharge-Mass Spectroscopy (GD-MS)
- 16.2.1. Principles
- 16.2.2. Instrumentation
- 16.2.2.1. Plasma Sources
- 16.2.2.2. Plasma Conditions
- 16.2.2.3. Detection of Optical Emission
- 16.2.2.4. Mass Spectroscopy
- 16.2.3. Quantification
- 16.2.3.1. Glow Discharge-Optical Emission Spectroscopy
- 16.2.3.2. Glow Discharge-Mass Spectroscopy
- 16.2.4. Applications
- 16.2.4.1. Glow Discharge-Optical Emission Spectroscopy
- 16.2.4.2. Glow Discharge-Mass Spectroscopy
- 16.3. Secondary Ion Mass Spectrometry (SIMS)
- 16.3.1. Principle of the Method
- 16.3.2. Data Analysis
- 16.3.3. Quantification
- 16.3.4. Applications for Solar Cells
- 16.4. Auger Electron Spectroscopy (AES)
- 16.4.1. Introduction
- 16.4.2. The Auger Process
- 16.4.3. Auger Electron Signals.
- 16.4.4. Instrumentation
- 16.4.5. Auger Electron Signal Intensities and Quantification
- 16.4.6. Quantification
- 16.4.7. Application
- 16.5. X-Ray Photoelectron Spectroscopy (XPS)
- 16.5.1. Theoretical Principles
- 16.5.2. Instrumentation
- 16.5.3. Application to Thin Film Solar Cells
- 16.6. Energy-Dispersive X-Ray Analysis on Fractured Cross Sections
- 16.6.1. Basics on Energy-Dispersive X-Ray Spectrometry in a Scanning Electron Microscope
- 16.6.2. Spatial Resolutions
- 16.6.3. Applications
- 16.6.3.1. Sample Preparation
- References
- 17. Hydrogen Effusion Experiments / Florian Einsele
- 17.1. Introduction
- 17.2. Experimental Setup
- 17.3. Data Analysis
- 17.3.1. Identification of Rate-Limiting Process
- 17.3.2. Analysis of Diffusing Hydrogen Species from Hydrogen Effusion Measurements
- 17.3.3. Analysis of H2 Surface Desorption
- 17.3.4. Analysis of Diffusion-Limited Effusion
- 17.3.5. Analysis of Effusion Spectra in Terms of Hydrogen Density of States
- 17.3.6. Analysis of Film Microstructure by Effusion of Implanted Rare Gases.
- 17.4. Discussion of Selected Results
- 17.4.1. Amorphous Silicon and Germanium Films
- 17.4.1.1. Material Density versus Annealing and Hydrogen Content
- 17.4.1.2. Effect of Doping on H Effusion
- 17.4.2. Amorphous Silicon Alloys: Si-C
- 17.4.3. Microcrystalline Silicon
- 17.4.4. Zinc Oxide Films
- 17.5. Comparison with Other Experiments
- 17.6. Concluding Remarks
- References
- pt. Four Materials and Device Modeling
- 18. Ab-Initio Modeling of Defects in Semiconductors / Johan Pohl
- 18.1. Introduction
- 18.2. Density Functional Theory and Methods
- 18.2.1. Basis Sets
- 18.2.2. Functionals for Exchange and Correlation
- 18.2.2.1. Local Approximations
- 18.2.2.2. Functionals Beyond LDA/GGA
- 18.3. Methods Beyond DFT
- 18.4. From Total Energies to Materials' Properties
- 18.5. Ab-initio Characterization of Point Defects
- 18.5.1. Thermodynamics of Point Defects
- 18.5.2. Formation Energies from Ab-Initio Calculations
- 18.5.3. Case study Point Defects in ZnO
- 18.6. Conclusions
- References
- 19. One-Dimensional Electro-Optical Simulations of Thin-Film Solar Cells / Thomas Kirchartz.
- 19.1. Introduction
- 19.2. Fundamentals
- 19.3. Modeling Hydrogenated Amorphous and Microcrystalline Silicon
- 19.3.1. Density of States and Transport Hydrogenated Amorphous Silicon
- 19.3.2. Density of States and Transport Hydrogenated Microcrystalline Silicon
- 19.3.3. Modeling Recombination in a-Si: H and & mu;c-Si: H
- 19.3.3.1. Recombination Statistics for Single-Electron States: Shockley-Read-Hall Recombination
- 19.3.3.2. Recombination Statistics for Amphoteric States
- 19.3.4. Modeling Cu(In, Ga)Se2 Solar Cells
- 19.3.4.1. Graded Band-Gap Devices
- 19.3.4.2. Issues when Modeling Graded Band-Gap Devices
- 19.3.4.3. Example
- 19.3.5. Modeling of CdTe Solar Cells
- 19.3.5.1. Baseline
- 19.3.5.2. The & Phi;b
- NAc (Barrier-Doping) Trade-Off
- 19.3.5.3. C-V Analysis as an Interpretation Aid of I-V Curves
- 19.4. Optical Modeling of Thin Solar Cells
- 19.4.1. Coherent Modeling of Flat Interfaces
- 19.4.2. Modeling of Rough Interfaces
- 19.5. Tools
- 19.5.1. AFORS-HET
- 19.5.2. AMPS-1D
- 19.5.3. ASA
- 19.5.4. PC1D
- 19.5.5. SCAPS.
- 19.5.6. SC-SIMUL
- References
- 20. Two- and Three-Dimensional Electronic Modeling of Thin-Film Solar Cells / Wyatt K. Metzger
- 20.1. Introduction
- 20.2. Applications
- 20.3. Methods
- 20.3.1. Equivalent-Circuit Modeling
- 20.3.2. Solving Semiconductor Equations
- 20.4.2.1. Creating a Semiconductor Model
- 20.4. Examples
- 20.4.1. Equivalent-Circuit Modeling Examples
- 20.4.2. Semiconductor Modeling Examples
- 20.5. Summary
- References.