Jet single-time Lagrange geometry and its applications /

"This book describes the main geometrical and physical aspects that differentiate two geometrical theories: the presented jet relativistic time-dependent Lagrangian geometry and the classical time-dependent Lagrangian geometry. An emphasis on the jet transformation group of the first approach i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Balan, Vladimir, 1958-
Συγγραφή απο Οργανισμό/Αρχή: Wiley InterScience (Online service)
Άλλοι συγγραφείς: Neagu, Mircea, 1973-
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, N.J. : John Wiley & Sons, [2011]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05797nam a2200661 4500
001 ocn757511646
003 OCoLC
005 20170124071715.7
006 m o d
007 cr cn|||||||||
008 111018s2011 njua ob 001 0 eng d
040 |a DG1  |b eng  |e pn  |c DG1  |d N$T  |d YDXCP  |d CDX  |d E7B  |d OCLCQ  |d REDDC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d DEBSZ  |d EBLCP  |d OCLCQ  |d OCLCA  |d DEBBG  |d OCLCQ  |d MHW  |d IDEBK  |d MEAUC  |d OCLCF  |d OCLCQ  |d COO  |d OCLCQ  |d GrThAP 
019 |a 757394260  |a 759152184  |a 815645981 
020 |a 9781118143759  |q (electronic bk.) 
020 |a 1118143752  |q (electronic bk.) 
020 |a 9781118143766  |q (electronic bk.) 
020 |a 1118143760  |q (electronic bk.) 
020 |z 9781118127551 
020 |z 1118127552 
024 8 |a 9786613282866 
029 1 |a AU@  |b 000049641688 
029 1 |a DEBBG  |b BV041758587 
029 1 |a DEBSZ  |b 372815022 
029 1 |a DEBSZ  |b 430990553 
029 1 |a DEBSZ  |b 449241165 
029 1 |a NZ1  |b 15916028 
035 |a (OCoLC)757511646  |z (OCoLC)757394260  |z (OCoLC)759152184  |z (OCoLC)815645981 
037 |a 10.1002/9781118143759  |b Wiley InterScience  |n http://www3.interscience.wiley.com 
050 4 |a QC20.7.D52  |b B355 2011 
072 7 |a SCI  |x 067000  |2 bisacsh 
082 0 4 |a 530.14/3  |2 23 
084 |a MAT012000  |2 bisacsh 
049 |a MAIN 
100 1 |a Balan, Vladimir,  |d 1958- 
245 1 0 |a Jet single-time Lagrange geometry and its applications /  |c Vladimir Balan, Mircea Neagu. 
264 1 |a Hoboken, N.J. :  |b John Wiley & Sons,  |c [2011] 
264 4 |c ©2011 
300 |a 1 online resource (xv, 194 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Front Matter -- The Jet Single-Time Lagrange Geometry. Jet geometrical objects depending on a relativistic time -- Deflection d-tensor identities in the relativistic time-dependent Lagrange geometry -- Local Bianchi identities in the relativistic time-dependent Lagrange geometry -- The jet Riemann-Lagrange geometry of the relativistic time-dependent Lagrange spaces -- The jet single-time electrodynamics -- Jet local single-time Finsler-Lagrange geometry for the rheonomic Berwald-Mo̤r metric of order three -- Jet local single-time Finsler-Lagrange approach for the rheonomic Berwald-Mo̤r metric of order four -- The jet local single-time Finsler-Lagrange geometry induced by the rheonomic Chernov metric of order four -- Jet Finslerian geometry of the conformal Minkowski metric -- Applications of the Jet Single-Time Lagrange Geometry. Geometrical objects produced by a nonlinear ODEs system of first-order and a pair of Riemannian metrics -- Jet single-time Lagrange geometry applied to the Lorenz atmospheric ODEs system -- Jet single-time Lagrange geometry applied to evolution ODEs systems from Economy -- Some evolution equations from Theoretical Biology and their single-time Lagrange geometrization on 1-jet spaces -- Jet geometrical objects produced by linear ODEs systems and higher-order ODEs -- Jet single-time geometrical extension of the KCC-invariants -- References -- Index. 
520 |a "This book describes the main geometrical and physical aspects that differentiate two geometrical theories: the presented jet relativistic time-dependent Lagrangian geometry and the classical time-dependent Lagrangian geometry. An emphasis on the jet transformation group of the first approach is more general and natural than the transformation group used in the second approach, mainly due to the fact that the last approach ignores temporal reparametrizations. In addition, the presented transformation group is appropriate for the construction of corresponding relativistic time-dependent Lagrangian geometrical field theories (gravitational and electromagnetic). The developed theory is further illustrated with numerous applications in mathematics, theoretical physics (including electrodynamics, relativity, and electromagnetism), atmospheric physics, economics, and theoretical biology. The geometrical Maxwell and Einstein equations presented in the book naturally generalize the already classical Maxwell and Einstein equations from the Miron-Anastasiei theory. The extended geometrical Einstein equations that govern the jet single-time Lagrange gravitational theory are canonical, and the electromagnetic d-tensor is produced from the metrical deflection d-tensors, all preceding entities being derived only from the given jet Lagrangian via its attached Cartan canonical Gamma-linear connection. The basic elements of the Kosambi-Cartan-Chern theory on the 1-jet space that extend the KCC tangent space approach are featured at the end of the book. Chapters are written in an introductory and gradual manner and contain numerous examples and open problems. An index of notions makes the main concepts of the theory and of the applications easy to locate"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
650 0 |a Geometry, Differential. 
650 0 |a Lagrange equations. 
650 0 |a Field theory (Physics) 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Field theory (Physics)  |2 fast  |0 (OCoLC)fst00923918 
650 7 |a Geometry, Differential.  |2 fast  |0 (OCoLC)fst00940919 
650 7 |a Lagrange equations.  |2 fast  |0 (OCoLC)fst00990773 
655 4 |a Electronic books. 
700 1 |a Neagu, Mircea,  |d 1973- 
710 2 |a Wiley InterScience (Online service) 
776 0 8 |i Print version:  |a Balan, Vladimir, 1958-  |t Jet single-time Lagrange geometry and its applications.  |d Hoboken, N.J. : John Wiley & Sons, ©2011  |z 9781118127551  |w (DLC) 2011021013  |w (OCoLC)726822485 
856 4 0 |u https://doi.org/10.1002/9781118143759  |z Full Text via HEAL-Link 
994 |a 92  |b DG1