Jet single-time Lagrange geometry and its applications /

"This book describes the main geometrical and physical aspects that differentiate two geometrical theories: the presented jet relativistic time-dependent Lagrangian geometry and the classical time-dependent Lagrangian geometry. An emphasis on the jet transformation group of the first approach i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Balan, Vladimir, 1958-
Συγγραφή απο Οργανισμό/Αρχή: Wiley InterScience (Online service)
Άλλοι συγγραφείς: Neagu, Mircea, 1973-
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, N.J. : John Wiley & Sons, [2011]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Front Matter
  • The Jet Single-Time Lagrange Geometry. Jet geometrical objects depending on a relativistic time
  • Deflection d-tensor identities in the relativistic time-dependent Lagrange geometry
  • Local Bianchi identities in the relativistic time-dependent Lagrange geometry
  • The jet Riemann-Lagrange geometry of the relativistic time-dependent Lagrange spaces
  • The jet single-time electrodynamics
  • Jet local single-time Finsler-Lagrange geometry for the rheonomic Berwald-Mo̤r metric of order three
  • Jet local single-time Finsler-Lagrange approach for the rheonomic Berwald-Mo̤r metric of order four
  • The jet local single-time Finsler-Lagrange geometry induced by the rheonomic Chernov metric of order four
  • Jet Finslerian geometry of the conformal Minkowski metric
  • Applications of the Jet Single-Time Lagrange Geometry. Geometrical objects produced by a nonlinear ODEs system of first-order and a pair of Riemannian metrics
  • Jet single-time Lagrange geometry applied to the Lorenz atmospheric ODEs system
  • Jet single-time Lagrange geometry applied to evolution ODEs systems from Economy
  • Some evolution equations from Theoretical Biology and their single-time Lagrange geometrization on 1-jet spaces
  • Jet geometrical objects produced by linear ODEs systems and higher-order ODEs
  • Jet single-time geometrical extension of the KCC-invariants
  • References
  • Index.