Biomechanics of hard tissues : modeling, testing, and materials /
This monograph assembles expert knowledge on the latest biomechanical modeling and testing of hard tissues, coupled with a concise introduction to the structural and physical properties of bone and cartilage. A strong focus lies on the current advances in understanding bone structure and function fr...
Άλλοι συγγραφείς: | , |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Weinheim :
Wiley-VCH,
[2010]
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Machine generated contents note: 1. Bone and Cartilage
- its Structure and Physical Properties / Ryszard Wojnar
- 1.1. Introduction
- 1.1.1. The Structure of Living Organisms
- 1.1.2. Growth of Living Organisms
- 1.1.2.1. Ring-Shaped Grain Boundary
- 1.1.3. Planarity of Biological Structures
- 1.2. Macroscopic Structure of the Bone
- 1.2.1. Growth of the Bone
- 1.2.2. Structure of the Body
- 1.2.3. Macroscopic Structure of Skeleton
- 1.2.4. Apatite in the Bone
- 1.2.5. Structure of the Bone
- 1.3. Microscopic Structure of the Bone
- 1.3.1. General
- 1.3.2. Osteon
- 1.3.3. Bone Innervation
- 1.3.3.1. Anatomy of Bone Innervation
- 1.3.4. Bone Cells
- 1.3.4.1. Cells
- 1.3.4.2. Cell Membrane
- 1.3.4.3. Membrane Transport
- 1.3.4.4. Bone Cell Types
- 1.3.4.5. Osteoclasts
- 1.3.5. Cellular Image
- OPG/RANK/RANKL Signaling System
- 1.3.5.1. Osteoprotegerin
- 1.3.5.2. RANK/RANKL
- 1.3.5.3. TACE
- 1.3.5.4. Bone Modeling and Remodeling
- 1.3.6. Proteins and Amino Acids.
- 1.3.7. Collagen and its Properties
- 1.3.7.1. Molecular Structure
- 1.3.8. Geometry of Triple Helix
- 1.3.9. Polymer Thermodynamics
- 1.3.9.1. Thermodynamics
- 1.3.9.2. Ideal Chain
- 1.3.9.3. Wormlike Chain
- 1.3.9.4. Architecture of Biological Fibers
- 1.3.9.5. Architecture of Collagen Fibers in Human Osteon
- 1.3.9.6. Collagen Elasticity
- 1.4. Remarks and Conclusions
- 1.5. Comments
- 1.6. Acknowledgments
- References
- Further Reading
- 2. Numerical Simulation of Bone Remodeling Process Considering Interface Tissue Differentiation in Total Hip Replacements / Carlos R.M. Roesler
- 2.1. Introduction
- 2.2. Mechanical Adaptation of Bone
- 2.3. Constitutive Models
- 2.3.1. Bone Constitutive Model
- 2.3.2. Interface Constitutive Model
- 2.3.3. Model for Periprosthetic Adaptation
- 2.3.4. Model for Interfacial Adaptation
- 2.4. Numerical Examples
- 2.5. Final Remarks
- 2.6. Acknowledgments
- References
- 3. Bone as a Composite Material / Virginia L. Ferguson
- 3.1. Introduction
- 3.2. Bone Phases
- 3.2.1. Organic.
- 3.2.2. Mineral
- 3.2.3. Physical Structure of Bone Material
- 3.2.4. Water
- 3.3. Bone Phase Material Properties
- 3.3.1. Organic Matrix
- 3.3.2. Mineral Phase
- 3.3.3. Water
- 3.3.4. Elastic Modulus of Composite Materials
- 3.4. Bone as a Composite: Macroscopic Effects
- 3.5. Bone as a Composite: Microscale Effects
- 3.6. Bone as a Composite: Anisotropy Effects
- 3.7. Bone as a Composite: Implications
- References
- 4. Mechanobiological Models for Bone Tissue. Applications to Implant Design / Manuel Doblare
- 4.1. Introduction
- 4.2. Biological and Mechanobiological Factors in Bone Remodeling and Bone Fracture Healing
- 4.2.1. Bone Remodeling
- 4.2.2. Bone Fracture Healing
- 4.3. Phenomenological Models of Bone Remodeling
- 4.4. Mechanistic Models of Bone Remodeling
- 4.5. Examples of Application of Bone Remodeling Models to Implant Design
- 4.6. Models of Tissue Differentiation. Application to Bone Fracture Healing
- 4.7. Mechanistic Models of Bone Fracture Healing
- 4.8. Examples of Application of Bone Fracture Healing Models to Implant Design.
- 4.9. Concluding Remarks
- References
- 5. Biomechanical Testing of Orthopedic Implants; Aspects of Tribology and Simulation / Yoshitaka Nakanishi
- 5.1. Introduction
- 5.2. Tribological Testing of Orthopedic Implants
- 5.3. Tribological Testing of Tissue from a Living Body
- 5.4. Theoretical Analysis for Tribological Issues
- References
- 6. Constitutive Modeling of the Mechanical Behavior of Trabecular Bone
- Continuum Mechanical Approaches / Seyed Mohammad Hossein Hosseini
- 6.1. Introduction
- 6.2. Summary of Elasticity Theory and Continuum Mechanics
- 6.2.1. Stress Tensor and Decomposition
- 6.2.2. Invariants
- 6.3. Constitutive Equations
- 6.3.1. Linear Elastic Behavior: Generalized Hooke's Law for Isotropic Materials
- 6.3.2. Linear Elastic Behavior: Generalized Hooke's Law for Orthotopic Materials
- 6.3.3. Linear Elastic Behavior: Generalized Hooke's Law for Orthotropic Materials with Cubic Structure
- 6.3.4. Linear Elastic Behavior: Generalized Hooke's Law for Transverse Isotropic Materials
- 6.3.5. Plastic Behavior, Failure, and Limit Surface
- 6.4. The Structure of Trabecular Bone and Modeling Approaches.
- 6.4.1. Structural Analogies: Cellular Plastics and Metals
- 6.5. Conclusions
- References
- 7. Mechanical and Magnetic Stimulation on Cells for Bone Regeneration / Kuo-Kang Liu
- 7.1. Introduction
- 7.2. Mechanical Stimulation on Cells
- 7.2.1. Various Mechanical Stimulations
- 7.2.2. Techniques for Applying Mechanical Loading
- 7.2.3. Mechanotransduction
- 7.2.4. Mechanical Influences on Stem Cell
- 7.3. Magnetic Stimulation on Cells
- 7.3.1. Magnetic Nanoparticles for Cell Stimulation
- 7.3.1.1. Properties of Magnetic Nanoparticles
- 7.3.1.2. Functionalization of Magnetic Nanoparticles
- 7.3.2. Magnetic Stimulation
- 7.3.2.1. Magnetic Pulling
- 7.3.2.2. Magnetic Twisting
- 7.3.3. Limitation of Using Magnetic Nanoparticles for Cell Stimulation
- 7.3.4. Magnetic Stimulation and Cell Conditioning for Tissue Regeneration
- 7.4. Summary
- References
- 8. Joint Replacement Implants / Duncan E.T. Shepherd
- 8.1. Introduction
- 8.2. Biomaterials for Joint Replacement Implants
- 8.3. Joint Replacement Implants for Weight-Bearing Joints
- 8.3.1. Introduction
- 8.3.2. Hip Joint Replacement.
- 8.3.3. Knee Joint Replacement
- 8.3.4. Ankle Joint Replacement
- 8.3.5. Methods of Fixation for Weight-Bearing Joint Replacement Implants
- 8.4. Joint Replacement Implants for Joints of the Hand and Wrist
- 8.4.1. Introduction
- 8.4.2. Finger Joint Replacement
- 8.4.3. Wrist Joint Replacement
- 8.5. Design of Joint Replacement Implants
- 8.5.1. Introduction
- 8.5.2. Feasibility
- 8.5.3. Design
- 8.5.4. Verification
- 8.5.5. Manufacture
- 8.5.6. Validation
- 8.5.7. Design Transfer
- 8.5.8. Design Changes
- 8.6. Conclusions
- References
- 9. Interstitial Fluid Movement in Cortical Bone Tissue / Stephen C. Cowin
- 9.1. Introduction
- 9.2. Arterial Supply
- 9.2.1. Overview of the Arterial System in Bone
- 9.2.2. Dynamics of the Arterial System
- 9.2.3. Transcortical Arterial Hemodynamics
- 9.2.4. The Arterial System in Small Animals may be Different from that in Humans
- 9.3. Microvascular Network of the Medullary Canal
- 9.4. Microvascular Network of Cortical Bone
- 9.5. Venous Drainage of Bone
- 9.6. Bone Lymphatics and Blood Vessel Trans-Wall Transport.
- 9.7. The Levels of Bone Porosity and their Bone Interfaces
- 9.7.1. The Vascular Porosity (PV)
- 9.7.2. The Lacunar-Canalicular Porosity (PLC)
- 9.7.3. The Collagen-Hydroxyapatite Porosity (PCA)
- 9.7.4. Cancellous Bone Porosity
- 9.7.5. The Interfaces between the Levels of Bone Porosity
- 9.8. Interstitial Fluid Flow
- 9.8.1. The Different Fluid Pressures in Long Bones (Blood Pressure, Interstitial Fluid Pressure, and Intramedullary Pressure)
- 9.8.2. Interstitial Flow and Mechanosensation
- 9.8.3. Electrokinetic Effects in Bone
- 9.8.4. The Poroelastic Model for the Cortical Bone
- 9.8.5. Interchange of Interstitial Fluid between the Vascular and Lacunar-Canalicular Porosities
- 9.8.6. Implications for the Determination of the Permeabilities
- References
- 10. Bone Implant Design Using Optimization Methods / Joao Folgado
- 10.1. Introduction
- 10.2. Optimization Methods for Implant Design
- 10.2.1. Cemented Stems
- 10.2.2. Uncemented Stems
- 10.3. Design Requirements for a Cementless Hip Stem
- 10.3.1. Implant Stability
- 10.3.2. Stress Shielding Effect.
- 10.4. Multicriteria Formulation for Hip Stem Design
- 10.4.1. Design Variables and Geometry
- 10.4.2. Objective Function for Interface Displacement
- 10.4.3. Objective Function for Interface Stress
- 10.4.4. Objective Function for Bone Remodeling
- 10.4.5. Multicriteria Objective Function
- 10.5. Computational Model
- 10.5.1. Optimization Algorithm
- 10.5.2. Finite Element Model
- 10.6. Optimal Geometries Analysis
- 10.6.1. Optimal Geometry for Tangential Interfacial Displacement
- fd
- 10.6.2. Optimal Geometry for Normal Contact Stress -ft
- 10.6.3. Optimal Geometry for Remodeling -fr
- 10.6.4. Multicriteria Optimal Geometries -fmc
- 10.7. Long-Term Performance of Optimized Implants
- 10.8. Concluding Remarks
- References.