Mixtures : estimation and applications /
This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a compl...
Άλλοι συγγραφείς: | , , |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Hoboken, N.J. :
Wiley,
2011.
|
Σειρά: | Wiley series in probability and statistics.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Machine generated contents note: 1. The EM algorithm, variational approximations and expectation propagation for mixtures / D. Michael Titterington
- 1.1. Preamble
- 1.2. The EM algorithm
- 1.2.1. Introduction to the algorithm
- 1.2.2. The E-step and the M-step for the mixing weights
- 1.2.3. The M-step for mixtures of univariate Gaussian distributions
- 1.2.4. M-step for mixtures of regular exponential family distributions formulated in terms of the natural parameters
- 1.2.5. Application to other mixtures
- 1.2.6. EM as a double expectation
- 1.3. Variational approximations
- 1.3.1. Preamble
- 1.3.2. Introduction to variational approximations
- 1.3.3. Application of variational Bayes to mixture problems
- 1.3.4. Application to other mixture problems
- 1.3.5. Recursive variational approximations
- 1.3.6. Asymptotic results
- 1.4. Expectation-propagation
- 1.4.1. Introduction
- 1.4.2. Overview of the recursive approach to be adopted.
- 1.4.3. Finite Gaussian mixtures with an unknown mean parameter
- 1.4.4. Mixture of two known distributions
- 1.4.5. Discussion
- Acknowledgements
- References
- 2. Online expectation maximisation / Olivier Cappe
- 2.1. Introduction
- 2.2. Model and assumptions
- 2.3. The EM algorithm and the limiting EM recursion
- 2.3.1. The batch EM algorithm
- 2.3.2. The limiting EM recursion
- 2.3.3. Limitations of batch EM for long data records
- 2.4. Online expectation maximisation
- 2.4.1. The algorithm
- 2.4.2. Convergence properties
- 2.4.3. Application to finite mixtures
- 2.4.4. Use for batch maximum-likelihood estimation
- 2.5. Discussion
- References
- 3. The limiting distribution of the EM test of the order of a finite mixture / Pengfei Li
- 3.1. Introduction
- 3.2. The method and theory of the EM test
- 3.2.1. The definition of the EM test statistic
- 3.2.2. The limiting distribution of the EM test statistic
- 3.3. Proofs.
- 3.4. Discussion
- References
- 4. Comparing Wald and likelihood regions applied to locally identifiable mixture models / Bruce G. Lindsay
- 4.1. Introduction
- 4.2. Background on likelihood confidence regions
- 4.2.1. Likelihood regions
- 4.2.2. Profile likelihood regions
- 4.2.3. Alternative methods
- 4.3. Background on simulation and visualisation of the likelihood regions
- 4.3.1. Modal simulation method
- 4.3.2. Illustrative example
- 4.4. Comparison between the likelihood regions and the Wald regions
- 4.4.1. Volume/volume error of the confidence regions
- 4.4.2. Differences in univariate intervals via worst case analysis
- 4.4.3. Illustrative example (revisited)
- 4.5. Application to a finite mixture model
- 4.5.1. Nonidentifiabilities and likelihood regions for the mixture parameters
- 4.5.2. Mixture likelihood region simulation and visualisation
- 4.5.3. Adequacy of using the Wald confidence region.
- 4.6. Data analysis
- 4.7. Discussion
- References
- 5. Mixture of experts modelling with social science applications / Thomas Brendan Murphy
- 5.1. Introduction
- 5.2. Motivating examples
- 5.2.1. Voting blocs
- 5.2.2. Social and organisational structure
- 5.3. Mixture models
- 5.4. Mixture of experts models
- 5.5. A mixture of experts model for ranked preference data
- 5.5.1. Examining the clustering structure
- 5.6. A mixture of experts latent position cluster model
- 5.7. Discussion
- Acknowledgements
- References
- 6. Modelling conditional densities using finite smooth mixtures / Robert Kohn
- 6.1. Introduction
- 6.2. The model and prior
- 6.2.1. Smooth mixtures
- 6.2.2. The component models
- 6.2.3. The prior
- 6.3. Inference methodology
- 6.3.1. The general MCMC scheme
- 6.3.2. Updating & beta; and I using variable-dimension finite-step Newton proposals
- 6.3.3. Model comparison
- 6.4. Applications
- 6.4.1. A small simulation study.
- 6.4.2. LIDAR data
- 6.4.3. Electricity expenditure data
- 6.5. Conclusions
- Acknowledgements
- Appendix: Implementation details for the gamma and log-normal models
- References
- 7. Nonparametric mixed membership modelling using the IBP compound Dirichlet process / David M. Blei
- 7.1. Introduction
- 7.2. Mixed membership models
- 7.2.1. Latent Dirichlet allocation
- 7.2.2. Nonparametric mixed membership models
- 7.3. Motivation
- 7.4. Decorrelating prevalence and proportion
- 7.4.1. Indian buffet process
- 7.4.2. The IBP compound Dirichlet process
- 7.4.3. An application of the ICD: focused topic models
- 7.4.4. Inference
- 7.5. Related models
- 7.6. Empirical studies
- 7.7. Discussion
- References
- 8. Discovering nonbinary hierarchical structures with Bayesian rose trees / Katherine A. Heller
- 8.1. Introduction
- 8.2. Prior work
- 8.3. Rose trees, partitions and mixtures
- 8.4. Avoiding needless cascades
- 8.4.1. Cluster models.
- 8.5. Greedy construction of Bayesian rose tree mixtures
- 8.5.1. Prediction
- 8.5.2. Hyperparameter optimisation
- 8.6. Bayesian hierarchical clustering, Dirichlet process models and product partition models
- 8.6.1. Mixture models and product partition models
- 8.6.2. PCluster and Bayesian hierarchical clustering
- 8.7. Results
- 8.7.1. Optimality of tree structure
- 8.7.2. Hierarchy likelihoods
- 8.7.3. Partially observed data
- 8.7.4. Psychological hierarchies
- 8.7.5. Hierarchies of Gaussian process experts
- 8.8. Discussion
- References
- 9. Mixtures of factor analysers for the analysis of high-dimensional data / Suren I. Rathnayake
- 9.1. Introduction
- 9.2. Single-factor analysis model
- 9.3. Mixtures of factor analysers
- 9.4. Mixtures of common factor analysers (MCFA)
- 9.5. Some related approaches
- 9.6. Fitting of factor-analytic models
- 9.7. Choice of the number of factors q
- 9.8. Example
- 9.9. Low-dimensional plots via MCFA approach.
- 9.10. Multivariate t-factor analysers
- 9.11. Discussion
- Appendix
- References
- 10. Dealing with label switching under model uncertainty / Sylvia Fruhwirth-Schnatter
- 10.1. Introduction
- 10.2. Labelling through clustering in the point-process representation
- 10.2.1. The point-process representation of a finite mixture model
- 10.2.2. Identification through clustering in the point-process representation
- 10.3. Identifying mixtures when the number of components is unknown
- 10.3.1. The role of Dirichlet priors in overfitting mixtures
- 10.3.2. The meaning of K for overfitting mixtures
- 10.3.3. The point-process representation of overfitting mixtures
- 10.3.4. Examples
- 10.4. Overfitting heterogeneity of component-specific parameters
- 10.4.1. Overfitting heterogeneity
- 10.4.2. Using shrinkage priors on the component-specific location parameters
- 10.5. Concluding remarks
- References
- 11. Exact Bayesian analysis of mixtures / Kerrie L. Mengersen.
- 11.1. Introduction
- 11.2. Formal derivation of the posterior distribution
- 11.2.1. Locally conjugate priors
- 11.2.2. True posterior distributions
- 11.2.3. Poisson mixture
- 11.2.4. Multinomial mixtures
- 11.2.5. Normal mixtures
- References
- 12. Manifold MCMC for mixtures / Mark Girolami
- 12.1. Introduction
- 12.2. Markov chain Monte Carlo Methods
- 12.2.1. Metropolis-Hastings
- 12.2.2. Gibbs sampling
- 12.2.3. Manifold Metropolis adjusted Langevin algorithm
- 12.2.4. Manifold Hamiltonian Monte Carlo
- 12.3. Finite Gaussian mixture models
- 12.3.1. Gibbs sampler for mixtures of univariate Gaussians
- 12.3.2. Manifold MCMC for mixtures of univariate Gaussians
- 12.3.3. Metric tensor
- 12.3.4. An illustrative example
- 12.4. Experiments
- 12.5. Discussion
- Acknowledgements
- Appendix
- References
- 13. How many components in a finite mixture? / Murray Aitkin
- 13.1. Introduction
- 13.2. The galaxy data
- 13.3. The normal mixture model.
- 13.4. Bayesian analyses
- 13.4.1. Escobar and West
- 13.4.2. Phillips and Smith
- 13.4.3. Roeder and Wasserman
- 13.4.4. Richardson and Green
- 13.4.5. Stephens
- 13.5. Posterior distributions for K (for flat prior)
- 13.6. Conclusions from the Bayesian analyses
- 13.7. Posterior distributions of the model deviances
- 13.8. Asymptotic distributions
- 13.9. Posterior deviances for the galaxy data
- 13.10. Conclusions
- References
- 14. Bayesian mixture models: a blood-free dissection of a sheep / Graham E. Gardner
- 14.1. Introduction
- 14.2. Mixture models
- 14.2.1. Hierarchical normal mixture
- 14.3. Altering dimensions of the mixture model
- 14.4. Bayesian mixture model incorporating spatial information
- 14.4.1. Results
- 14.5. Volume calculation
- 14.6. Discussion
- References.