Statistical pattern recognition.

"Statistical Pattern Recognition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. The book describes techniques for analysing data com...

Full description

Bibliographic Details
Main Author: Webb, A. R. (Andrew R.)
Other Authors: Copsey, Keith D., Cawley, Gavin
Format: eBook
Language:English
Published: Oxford : Wiley-Blackwell, 2011.
Edition:3rd ed. /
Subjects:
Online Access:Full Text via HEAL-Link
Table of Contents:
  • Note continued: 9.3.Comparing Classifier Performance
  • 9.3.1. Which Technique is Best?
  • 9.3.2. Statistical Tests
  • 9.3.3.Comparing Rules When Misclassification Costs are Uncertain
  • 9.3.4. Example Application Study
  • 9.3.5. Further Developments
  • 9.3.6. Summary
  • 9.4. Application Studies
  • 9.5. Summary and Discussion
  • 9.6. Recommendations
  • 9.7. Notes and References
  • Exercises
  • 10. Feature Selection and Extraction
  • 10.1. Introduction
  • 10.2. Feature Selection
  • 10.2.1. Introduction
  • 10.2.2. Characterisation of Feature Selection Approaches
  • 10.2.3. Evaluation Measures
  • 10.2.4. Search Algorithms for Feature Subset Selection
  • 10.2.5.Complete Search
  • Branch and Bound
  • 10.2.6. Sequential Search
  • 10.2.7. Random Search
  • 10.2.8. Markov Blanket
  • 10.2.9. Stability of Feature Selection
  • 10.2.10. Example Application Study
  • 10.2.11. Further Developments
  • 10.2.12. Summary
  • 10.3. Linear Feature Extraction
  • 10.3.1. Principal Components Analysis
  • 10.3.2. Karhunen-Loeve Transformation
  • 10.3.3. Example Application Study
  • 10.3.4. Further Developments
  • 10.3.5. Summary
  • 10.4. Multidimensional Scaling
  • 10.4.1. Classical Scaling
  • 10.4.2. Metric MDS
  • 10.4.3. Ordinal Scaling
  • 10.4.4. Algorithms
  • 10.4.5. MDS for Feature Extraction
  • 10.4.6. Example Application Study
  • 10.4.7. Further Developments
  • 10.4.8. Summary
  • 10.5. Application Studies
  • 10.6. Summary and Discussion
  • 10.7. Recommendations
  • 10.8. Notes and References
  • Exercises
  • 11. Clustering
  • 11.1. Introduction
  • 11.2. Hierarchical Methods
  • 11.2.1. Single-Link Method
  • 11.2.2.Complete-Link Method
  • 11.2.3. Sum-of-Squares Method
  • 11.2.4. General Agglomerative Algorithm
  • 11.2.5. Properties of a Hierarchical Classification
  • 11.2.6. Example Application Study
  • 11.2.7. Summary
  • 11.3. Quick Partitions
  • 11.4. Mixture Models
  • 11.4.1. Model Description
  • 11.4.2. Example Application Study
  • 11.5. Sum-of-Squares Methods
  • 11.5.1. Clustering Criteria
  • 11.5.2. Clustering Algorithms
  • 11.5.3. Vector Quantisation
  • 11.5.4. Example Application Study
  • 11.5.5. Further Developments
  • 11.5.6. Summary
  • 11.6. Spectral Clustering
  • 11.6.1. Elementary Graph Theory
  • 11.6.2. Similarity Matrices
  • 11.6.3. Application to Clustering
  • 11.6.4. Spectral Clustering Algorithm
  • 11.6.5. Forms of Graph Laplacian
  • 11.6.6. Example Application Study
  • 11.6.7. Further Developments
  • 11.6.8. Summary
  • 11.7. Cluster Validity
  • 11.7.1. Introduction
  • 11.7.2. Statistical Tests
  • 11.7.3. Absence of Class Structure
  • 11.7.4. Validity of Individual Clusters
  • 11.7.5. Hierarchical Clustering
  • 11.7.6. Validation of Individual Clusterings
  • 11.7.7. Partitions
  • 11.7.8. Relative Criteria
  • 11.7.9. Choosing the Number of Clusters
  • 11.8. Application Studies
  • 11.9. Summary and Discussion
  • 11.10. Recommendations
  • 11.11. Notes and References
  • Exercises
  • 12.Complex Networks
  • 12.1. Introduction
  • 12.1.1. Characteristics
  • 12.1.2. Properties
  • 12.1.3. Questions to Address
  • 12.1.4. Descriptive Features
  • 12.1.5. Outline
  • 12.2. Mathematics of Networks
  • 12.2.1. Graph Matrices
  • 12.2.2. Connectivity
  • 12.2.3. Distance Measures
  • 12.2.4. Weighted Networks
  • 12.2.5. Centrality Measures
  • 12.2.6. Random Graphs
  • 12.3.Community Detection
  • 12.3.1. Clustering Methods
  • 12.3.2. Girvan-Newman Algorithm
  • 12.3.3. Modularity Approaches
  • 12.3.4. Local Modularity
  • 12.3.5. Clique Percolation
  • 12.3.6. Example Application Study
  • 12.3.7. Further Developments
  • 12.3.8. Summary
  • 12.4. Link Prediction
  • 12.4.1. Approaches to Link Prediction
  • 12.4.2. Example Application Study
  • 12.4.3. Further Developments
  • 12.5. Application Studies
  • 12.6. Summary and Discussion
  • 12.7. Recommendations
  • 12.8. Notes and References
  • Exercises
  • 13. Additional Topics
  • 13.1. Model Selection
  • 13.1.1. Separate Training and Test Sets
  • 13.1.2. Cross-Validation
  • 13.1.3. The Bayesian Viewpoint
  • 13.1.4. Akaike's Information Criterion
  • 13.1.5. Minimum Description Length
  • 13.2. Missing Data
  • 13.3. Outlier Detection and Robust Procedures
  • 13.4. Mixed Continuous and Discrete Variables
  • 13.5. Structural Risk Minimisation and the Vapnik-Chervonenkis Dimension
  • 13.5.1. Bounds on the Expected Risk
  • 13.5.2. The VC Dimension.