Statistical pattern recognition.
"Statistical Pattern Recognition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. The book describes techniques for analysing data com...
Main Author: | |
---|---|
Other Authors: | , |
Format: | eBook |
Language: | English |
Published: |
Oxford :
Wiley-Blackwell,
2011.
|
Edition: | 3rd ed. / |
Subjects: | |
Online Access: | Full Text via HEAL-Link |
Table of Contents:
- Note continued: 9.3.Comparing Classifier Performance
- 9.3.1. Which Technique is Best?
- 9.3.2. Statistical Tests
- 9.3.3.Comparing Rules When Misclassification Costs are Uncertain
- 9.3.4. Example Application Study
- 9.3.5. Further Developments
- 9.3.6. Summary
- 9.4. Application Studies
- 9.5. Summary and Discussion
- 9.6. Recommendations
- 9.7. Notes and References
- Exercises
- 10. Feature Selection and Extraction
- 10.1. Introduction
- 10.2. Feature Selection
- 10.2.1. Introduction
- 10.2.2. Characterisation of Feature Selection Approaches
- 10.2.3. Evaluation Measures
- 10.2.4. Search Algorithms for Feature Subset Selection
- 10.2.5.Complete Search
- Branch and Bound
- 10.2.6. Sequential Search
- 10.2.7. Random Search
- 10.2.8. Markov Blanket
- 10.2.9. Stability of Feature Selection
- 10.2.10. Example Application Study
- 10.2.11. Further Developments
- 10.2.12. Summary
- 10.3. Linear Feature Extraction
- 10.3.1. Principal Components Analysis
- 10.3.2. Karhunen-Loeve Transformation
- 10.3.3. Example Application Study
- 10.3.4. Further Developments
- 10.3.5. Summary
- 10.4. Multidimensional Scaling
- 10.4.1. Classical Scaling
- 10.4.2. Metric MDS
- 10.4.3. Ordinal Scaling
- 10.4.4. Algorithms
- 10.4.5. MDS for Feature Extraction
- 10.4.6. Example Application Study
- 10.4.7. Further Developments
- 10.4.8. Summary
- 10.5. Application Studies
- 10.6. Summary and Discussion
- 10.7. Recommendations
- 10.8. Notes and References
- Exercises
- 11. Clustering
- 11.1. Introduction
- 11.2. Hierarchical Methods
- 11.2.1. Single-Link Method
- 11.2.2.Complete-Link Method
- 11.2.3. Sum-of-Squares Method
- 11.2.4. General Agglomerative Algorithm
- 11.2.5. Properties of a Hierarchical Classification
- 11.2.6. Example Application Study
- 11.2.7. Summary
- 11.3. Quick Partitions
- 11.4. Mixture Models
- 11.4.1. Model Description
- 11.4.2. Example Application Study
- 11.5. Sum-of-Squares Methods
- 11.5.1. Clustering Criteria
- 11.5.2. Clustering Algorithms
- 11.5.3. Vector Quantisation
- 11.5.4. Example Application Study
- 11.5.5. Further Developments
- 11.5.6. Summary
- 11.6. Spectral Clustering
- 11.6.1. Elementary Graph Theory
- 11.6.2. Similarity Matrices
- 11.6.3. Application to Clustering
- 11.6.4. Spectral Clustering Algorithm
- 11.6.5. Forms of Graph Laplacian
- 11.6.6. Example Application Study
- 11.6.7. Further Developments
- 11.6.8. Summary
- 11.7. Cluster Validity
- 11.7.1. Introduction
- 11.7.2. Statistical Tests
- 11.7.3. Absence of Class Structure
- 11.7.4. Validity of Individual Clusters
- 11.7.5. Hierarchical Clustering
- 11.7.6. Validation of Individual Clusterings
- 11.7.7. Partitions
- 11.7.8. Relative Criteria
- 11.7.9. Choosing the Number of Clusters
- 11.8. Application Studies
- 11.9. Summary and Discussion
- 11.10. Recommendations
- 11.11. Notes and References
- Exercises
- 12.Complex Networks
- 12.1. Introduction
- 12.1.1. Characteristics
- 12.1.2. Properties
- 12.1.3. Questions to Address
- 12.1.4. Descriptive Features
- 12.1.5. Outline
- 12.2. Mathematics of Networks
- 12.2.1. Graph Matrices
- 12.2.2. Connectivity
- 12.2.3. Distance Measures
- 12.2.4. Weighted Networks
- 12.2.5. Centrality Measures
- 12.2.6. Random Graphs
- 12.3.Community Detection
- 12.3.1. Clustering Methods
- 12.3.2. Girvan-Newman Algorithm
- 12.3.3. Modularity Approaches
- 12.3.4. Local Modularity
- 12.3.5. Clique Percolation
- 12.3.6. Example Application Study
- 12.3.7. Further Developments
- 12.3.8. Summary
- 12.4. Link Prediction
- 12.4.1. Approaches to Link Prediction
- 12.4.2. Example Application Study
- 12.4.3. Further Developments
- 12.5. Application Studies
- 12.6. Summary and Discussion
- 12.7. Recommendations
- 12.8. Notes and References
- Exercises
- 13. Additional Topics
- 13.1. Model Selection
- 13.1.1. Separate Training and Test Sets
- 13.1.2. Cross-Validation
- 13.1.3. The Bayesian Viewpoint
- 13.1.4. Akaike's Information Criterion
- 13.1.5. Minimum Description Length
- 13.2. Missing Data
- 13.3. Outlier Detection and Robust Procedures
- 13.4. Mixed Continuous and Discrete Variables
- 13.5. Structural Risk Minimisation and the Vapnik-Chervonenkis Dimension
- 13.5.1. Bounds on the Expected Risk
- 13.5.2. The VC Dimension.