Financial models with Lévy processes and volatility clustering /

The financial crisis that began in the summer of 2007 has led to criticisms that the financial models used by risk managers, portfolio managers, and even regulators simply do not reflect the realities of today's markets. While one tool cannot be blamed for the entire global financial crisis, im...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: Wiley InterScience (Online service)
Άλλοι συγγραφείς: Rachev, S. T. (Svetlozar Todorov)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, N.J. : John Wiley, [2011]
Σειρά:Frank J. Fabozzi series.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 13983nam a2200937 4500
001 ocn773301034
003 OCoLC
005 20170124072422.2
006 m o d
007 cr cn|||||||||
008 120119s2011 njua ob 001 0 eng d
010 |z  2010033299 
040 |a DG1  |b eng  |e pn  |c DG1  |d N$T  |d YDXCP  |d E7B  |d CDX  |d OCLCQ  |d REDDC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCA  |d EBLCP  |d IDEBK  |d DEBSZ  |d DEBBG  |d OCLCQ  |d COO  |d S3O  |d OCLCQ  |d AZK  |d DG1  |d LOA  |d GrThAP 
019 |a 705868754  |a 705929934  |a 961490919  |a 962604850 
020 |a 9781118268070  |q (electronic bk.) 
020 |a 1118268075  |q (electronic bk.) 
020 |a 9780470937167  |q (electronic bk.) 
020 |a 0470937165  |q (electronic bk.) 
020 |z 9780470482353 
020 |z 0470482354 
029 1 |a AU@  |b 000048807412 
029 1 |a AU@  |b 000049641593 
029 1 |a AU@  |b 000053280545 
029 1 |a CHNEW  |b 000612540 
029 1 |a DEBBG  |b BV040590313 
029 1 |a DEBBG  |b BV041908367 
029 1 |a DEBSZ  |b 396952909 
029 1 |a DEBSZ  |b 43094599X 
029 1 |a DEBSZ  |b 449224759 
029 1 |a DKDLA  |b 820120-katalog:000573467 
029 1 |a NZ1  |b 13935002 
035 |a (OCoLC)773301034  |z (OCoLC)705868754  |z (OCoLC)705929934  |z (OCoLC)961490919  |z (OCoLC)962604850 
037 |a 10.1002/9781118268070  |b Wiley InterScience  |n http://www3.interscience.wiley.com 
050 4 |a HG4637  |b .F56 2011 
072 7 |a BUS  |x 027000  |2 bisacsh 
082 0 4 |a 332/.0415015192  |2 22 
049 |a MAIN 
245 0 0 |a Financial models with Lévy processes and volatility clustering /  |c Svetlozar T. Rachev [and others]. 
264 1 |a Hoboken, N.J. :  |b John Wiley,  |c [2011] 
264 4 |c ©2011 
300 |a 1 online resource (xx, 394 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a The Frank J. Fabozzi series 
505 0 |a Front Matter -- Introduction -- Probability Distributions -- Stable and Tempered Stable Distributions -- Stochastic Processes in Continuous Time -- Conditional Expectation and Change of Measure -- Exponential Levy Models -- Option Pricing in Exponential Levy Models -- Simulation -- Multi-Tail t-Distribution -- Non-Gaussian Portfolio Allocation -- Normal GARCH models -- Smoothly Truncated Stable GARCH Models -- Infinitely Divisible GARCH Models -- Option Pricing with Monte Carlo Methods -- American Option Pricing with Monte Carlo Methods -- Index. 
505 0 0 |g Machine generated contents note:  |g ch. 1  |t Introduction --  |g 1.1.  |t The Need for Better Financial Modeling of Asset Prices --  |g 1.2.  |t The Family of Stable Distribution and Its Properties --  |g 1.2.1.  |t Parameterization of the Stable Distribution --  |g 1.2.2.  |t Desirable Properties of the Stable Distributions --  |g 1.2.3.  |t Considerations in the Use of the Stable Distribution --  |g 1.3.  |t Option Pricing with Volatility Clustering --  |g 1.3.1.  |t Non-Gaussian GARCH Models --  |g 1.4.  |t Model Dependencies --  |g 1.5.  |t Monte Carlo --  |g 1.6.  |t Organization of the Book --  |t References --  |g ch. 2  |t Probability Distributions --  |g 2.1.  |t Basic Concepts --  |g 2.2.  |t Discrete Probability Distributions --  |g 2.2.1.  |t Bernoulli Distribution --  |g 2.2.2.  |t Binomial Distribution --  |g 2.2.3.  |t Poisson Distribution --  |g 2.3.  |t Continuous Probability Distributions --  |g 2.3.1.  |t Probability Distribution Function, Probability Density Function, and Cumulative Distribution Function --  |g 2.3.2.  |t Normal Distribution --  |g 2.3.3.  |t Exponential Distribution --  |g 2.3.4.  |t Gamma Distribution. 
505 0 0 |g 2.3.5.  |t Variance Gamma Distribution --  |g 2.3.6.  |t Inverse Gaussian Distribution --  |g 2.4.  |t Statistic Moments and Quantiles --  |g 2.4.1.  |t Location --  |g 2.4.2.  |t Dispersion --  |g 2.4.3.  |t Asymmetry --  |g 2.4.4.  |t Concentration in Tails --  |g 2.4.5.  |t Statistical Moments --  |g 2.4.6.  |t Quantiles --  |g 2.4.7.  |t Sample Moments --  |g 2.5.  |t Characteristic Function --  |g 2.6.  |t Joint Probability Distributions --  |g 2.6.1.  |t Conditional Probability --  |g 2.6.2.  |t Joint Probability Distribution Defined --  |g 2.6.3.  |t Marginal Distribution --  |g 2.6.4.  |t Dependence of Random Variables --  |g 2.6.5.  |t Covariance and Correlation --  |g 2.6.6.  |t Multivariate Normal Distribution --  |g 2.6.7.  |t Elliptical Distributions --  |g 2.6.8.  |t Copula Functions --  |g 2.7.  |t Summary --  |t References --  |g ch. 3  |t Stable and Tempered Stable Distributions --  |g 3.1.  |t & alpha;-Stable Distribution --  |g 3.1.1.  |t Definition of an & alpha;-Stable Random Variable --  |g 3.1.2.  |t Useful Properties of an & alpha;-Stable Random Variable --  |g 3.1.3.  |t Smoothly Truncated Stable Distribution --  |g 3.2.  |t Tempered Stable Distributions --  |g 3.2.1.  |t Classical Tempered Stable Distribution. 
505 0 0 |g 3.2.2.  |t Generalized Classical Tempered Stable Distribution --  |g 3.2.3.  |t Modified Tempered Stable Distribution --  |g 3.2.4.  |t Normal Tempered Stable Distribution --  |g 3.2.5.  |t Kim-Rachev Tempered Stable Distribution --  |g 3.2.6.  |t Rapidly Decreasing Tempered Stable Distribution --  |g 3.3.  |t Infinitely Divisible Distributions --  |g 3.3.1.  |t Exponential Moments --  |g 3.4.  |t Summary --  |g 3.5.  |t Appendix --  |g 3.5.1.  |t The Hypergeometric Function --  |g 3.5.2.  |t The Confluent Hypergeometric Function --  |t References --  |g ch. 4  |t Stochastic Processes in Continuous Time --  |g 4.1.  |t Some Preliminaries --  |g 4.2.  |t Poisson Process --  |g 4.2.1.  |t Compounded Poisson Process --  |g 4.3.  |t Pure Jump Process --  |g 4.3.1.  |t Gamma Process --  |g 4.3.2.  |t Inverse Gaussian Process --  |g 4.3.3.  |t Variance Gamma Process --  |g 4.3.4.  |t & alpha;-Stable Process --  |g 4.3.5.  |t Tempered Stable Process --  |g 4.4.  |t Brownian Motion --  |g 4.4.1.  |t Arithmetic Brownian Motion --  |g 4.4.2.  |t Geometric Brownian Motion --  |g 4.5.  |t Time-Changed Brownian Motion --  |g 4.5.1.  |t Variance Gamma Process --  |g 4.5.2.  |t Normal Inverse Gaussian Process --  |g 4.5.3.  |t Normal Tempered Stable Process. 
505 0 0 |g 4.6.  |t Levy Process --  |g 4.7.  |t Summary --  |t References --  |g ch. 5  |t Conditional Expectation and Change of Measure --  |g 5.1.  |t Events, & sigma;-Fields, and Filtration --  |g 5.2.  |t Conditional Expectation --  |g 5.3.  |t Change of Measures --  |g 5.3.1.  |t Equivalent Probability Measure --  |g 5.3.2.  |t Change of Measure for Continuous-Time Processes --  |g 5.3.3.  |t Change of Measure in Tempered Stable Processes --  |g 5.4.  |t Summary --  |t References --  |g ch. 6  |t Exponential Levy Models --  |g 6.1.  |t Exponential Levy Models --  |g 6.2.  |t Fitting & alpha;-Stable and Tempered Stable Distributions --  |g 6.2.1.  |t Fitting the Characteristic Function --  |g 6.2.2.  |t Maximum Likelihood Estimation with Numerical Approximation of the Density Function --  |g 6.2.3.  |t Assessing the Goodness of Fit --  |g 6.3.  |t Illustration: Parameter Estimation for Tempered Stable Distributions --  |g 6.4.  |t Summary --  |g 6.5.  |t Appendix: Numerical Approximation of Probability Density and Cumulative Distribution Functions --  |g 6.5.1.  |t Numerical Method for the Fourier Transform --  |t References --  |g ch. 7  |t Option Pricing in Exponential Levy Models --  |g 7.1.  |t Option Contract. 
505 0 0 |g 7.2.  |t Boundary Conditions for the Price of an Option --  |g 7.3.  |t No-Arbitrage Pricing and Equivalent Martingale Measure --  |g 7.4.  |t Option Pricing under the Black-Scholes Model --  |g 7.5.  |t European Option Pricing under Exponential Tempered Stable Models --  |g 7.5.1.  |t Illustration: Implied Volatility --  |g 7.5.2.  |t Illustration: Calibrating Risk-Neutral Parameters --  |g 7.5.3.  |t Illustration: Calibrating Market Parameters and Risk-Neutral Parameters Together --  |g 7.6.  |t Subordinated Stock Price Model --  |g 7.6.1.  |t Stochastic Volatility Levy Process Model --  |g 7.7.  |t Summary --  |t References --  |g ch. 8  |t Simulation --  |g 8.1.  |t Random Number Generators --  |g 8.1.1.  |t Uniform Distributions --  |g 8.1.2.  |t Discrete Distributions --  |g 8.1.3.  |t Continuous Nonuniform Distributions --  |g 8.1.4.  |t Simulation of Particular Distributions --  |g 8.2.  |t Simulation Techniques for Levy Processes --  |g 8.2.1.  |t Taking Care of Small Jumps --  |g 8.2.2.  |t Series Representation: A General Framework --  |g 8.2.3.  |t Rosinsky Rejection Method --  |g 8.2.4.  |t & alpha;-Stable Processes --  |g 8.3.  |t Tempered Stable Processes. 
505 0 0 |g 8.3.1.  |t Kim-Rachev Tempered Stable Case --  |g 8.3.2.  |t Classical Tempered Stable Case --  |g 8.4.  |t Tempered Infinitely Divisible Processes --  |g 8.4.1.  |t Rapidly Decreasing Tempered Stable Case --  |g 8.4.2.  |t Modified Tempered Stable Case --  |g 8.5.  |t Time-Changed Brownian Motion --  |g 8.5.1.  |t Classical Tempered Stable Processes --  |g 8.5.2.  |t Variance Gamma and Skewed Variance Gamma Processes --  |g 8.5.3.  |t Normal Tempered Stable Processes --  |g 8.5.4.  |t Normal Inverse Gaussian Processes --  |g 8.6.  |t Monte Carlo Methods --  |g 8.6.1.  |t Variance Reduction Techniques --  |g 8.6.2.  |t A Nonparametric Monte Carlo Method --  |g 8.6.3.  |t A Monte Carlo Example --  |t Appendix --  |t References --  |g ch. 9  |t Multi-Tail t-Distribution --  |g 9.1.  |t Introduction --  |g 9.2.  |t Principal Component Analysis --  |g 9.2.1.  |t Principal Component Tail Functions --  |g 9.2.2.  |t Density of a Multi-Tail t Random Variable --  |g 9.3.  |t Estimating Parameters --  |g 9.3.1.  |t Estimation of the Dispersion Matrix --  |g 9.3.2.  |t Estimation of the Parameter Set & theta; --  |g 9.4.  |t Empirical Results --  |g 9.4.1.  |t Comparison to Other Models --  |g 9.4.2.  |t Two-Dimensional Analysis. 
505 0 0 |g 9.4.3.  |t Multi-Tail t Model Check for the DAX --  |g 9.5.  |t Summary --  |t References --  |g ch. 10  |t Non-Gaussian Portfolio Allocation --  |g 10.1.  |t Introduction --  |g 10.2.  |t Multifactor Linear Model --  |g 10.3.  |t Modeling Dependencies --  |g 10.4.  |t Average Value-at-Risk --  |g 10.5.  |t Optimal Portfolios --  |g 10.6.  |t The Algorithm --  |g 10.7.  |t An Empirical Test --  |g 10.8.  |t Summary --  |t References --  |g ch. 11  |t Normal GARCH models --  |g 11.1.  |t Introduction --  |g 11.2.  |t GARCH Dynamics with Normal Innovation --  |g 11.3.  |t Market Estimation --  |g 11.4.  |t Risk-Neutral Estimation --  |g 11.4.1.  |t Out-of-Sample Performance --  |g 11.5.  |t Summary --  |t References --  |g ch. 12  |t Smoothly Truncated Stable GARCH Models --  |g 12.1.  |t Introduction --  |g 12.2.  |t A Generalized NGARCH Option Pricing Model --  |g 12.3.  |t Empirical Analysis --  |g 12.3.1.  |t Results under the Objective Probability Measure --  |g 12.3.2.  |t Explaining S & P 500 Option Prices --  |g 12.4.  |t Summary --  |t References --  |g ch. 13  |t Infinitely Divisible GARCH Models --  |g 13.1.  |t Stock Price Dynamic --  |g 13.2.  |t Risk-Neutral Dynamic --  |g 13.3.  |t Non-Normal Infinitely Divisible GARCH --  |g 13.3.1.  |t Classical Tempered Stable Model. 
505 0 0 |g 13.3.2.  |t Generalized Tempered Stable Model --  |g 13.3.3.  |t Kim-Rachev Model --  |g 13.3.4.  |t Rapidly Decreasing Tempered Stable Model --  |g 13.3.5.  |t Inverse Gaussian Model --  |g 13.3.6.  |t Skewed Variance Gamma Model --  |g 13.3.7.  |t Normal Inverse Gaussian Model --  |g 13.4.  |t Simulate Infinitely Divisible GARCH --  |t Appendix --  |t References --  |g ch. 14  |t Option Pricing with Monte Carlo Methods --  |g 14.1.  |t Introduction --  |g 14.2.  |t Data Set --  |g 14.2.1.  |t Market Estimation --  |g 14.3.  |t Performance of Option Pricing Models --  |g 14.3.1.  |t In-Sample --  |g 14.3.2.  |t Out-of-Sample --  |g 14.4.  |t Summary --  |t References --  |g ch. 15  |t American Option Pricing with Monte Carlo Methods --  |g 15.1.  |t American Option Pricing in Discrete Time --  |g 15.2.  |t The Least Squares Monte Carlo Method --  |g 15.3.  |t LSM Method in GARCH Option Pricing Model --  |g 15.4.  |t Empirical Illustration --  |g 15.5.  |t Summary --  |t References. 
504 |a Includes bibliographical references and index. 
520 |a The financial crisis that began in the summer of 2007 has led to criticisms that the financial models used by risk managers, portfolio managers, and even regulators simply do not reflect the realities of today's markets. While one tool cannot be blamed for the entire global financial crisis, improving the flexibility and statistical reliability of existing models, in addition to developing better models, is essential for both financial practitioners and academics seeking to explain and prevent extreme events. 
520 |a Nobody understands this better than the expert author team of Svetlozar Rachev, Young Shin Kim, Michele Leonardo Bianchi, and Frank Fabozzi, and in Financial Models with Levy Processes and Volatility Clustering, they present a framework for modeling the behavior of stock returns in a univariate and multivariate setting--providing you with practical applications to option pricing and portfolio management. They also explain the reasons for working with non-normal distributions in financial modeling and the best methodologies for employing them. 
520 |a This reliable resource includes detailed discussions of the basics of probability distributions and explains the alpha-stable distribution and the tempered stable distribution. The authors also explore discrete-time option pricing models, beginning with the classical normal model with volatility clustering to more recent models that consider both volatility clustering and heavy tails. 
520 |a Filled with in-depth insights and expert advice, Financial Models with Levy Processes and Volatility Clustering is a thorough guide to both current probability distribution methods and brand new methodologies for financial modeling. --Book Jacket. 
588 0 |a Print version record. 
650 0 |a Capital assets pricing model. 
650 0 |a Lévy processes. 
650 0 |a Finance  |x Mathematical models. 
650 0 |a Probabilities. 
650 4 |a Capital assets pricing model. 
650 4 |a Finance  |x Mathematical models. 
650 4 |a Le'vy processes. 
650 4 |a Probabilities. 
650 7 |a BUSINESS & ECONOMICS  |x Finance.  |2 bisacsh 
650 7 |a Capital assets pricing model.  |2 fast  |0 (OCoLC)fst00846288 
650 7 |a Finance  |x Mathematical models.  |2 fast  |0 (OCoLC)fst00924398 
650 7 |a Lévy processes.  |2 fast  |0 (OCoLC)fst01004416 
650 7 |a Probabilities.  |2 fast  |0 (OCoLC)fst01077737 
655 4 |a Electronic books. 
655 7 |a Electronic books.  |2 local 
700 1 |a Rachev, S. T.  |q (Svetlozar Todorov) 
710 2 |a Wiley InterScience (Online service) 
776 0 8 |i Print version:  |t Financial models with Lévy processes and volatility clustering.  |d Hoboken, N.J. : John Wiley, ©2011  |z 9780470482353  |w (DLC) 2010033299  |w (OCoLC)656452753 
830 0 |a Frank J. Fabozzi series. 
856 4 0 |u https://doi.org/10.1002/9781118268070  |z Full Text via HEAL-Link 
994 |a 92  |b DG1