The mathematics of derivatives securities with applications in MATLAB /

"The book is divided into two parts - the first part introduces probability theory, stochastic calculus and stochastic processes before moving on to the second part which instructs readers on how to apply the content learnt in part one to solve complex financial problems such as pricing and hed...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cerrato, Mario
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken : John Wiley & Sons Inc., 2012.
Σειρά:Wiley finance series.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 07782nam a2200829 4500
001 ocn773371813
003 OCoLC
005 20170124072439.4
006 m o d
007 cr |||||||||||
008 120118s2012 nju ob 001 0 eng
010 |a  2012002416 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d EBLCP  |d N$T  |d YDXCP  |d IDEBK  |d TEFOD  |d DEBSZ  |d UKDOC  |d AU@  |d DG1  |d OCLCO  |d DEBBG  |d TEFOD  |d OCLCQ  |d OCLCO  |d OCLCQ  |d COO  |d OCLCO  |d DG1  |d GrThAP 
019 |a 776108264  |a 780371027  |a 796002055  |a 817082297  |a 880748609 
020 |a 9781119973409  |q (Adobe PDF) 
020 |a 1119973406  |q (Adobe PDF) 
020 |a 9781119973416  |q (ePub) 
020 |a 1119973414  |q (ePub) 
020 |a 9781119973423  |q (MobiPocket) 
020 |a 1119973422  |q (MobiPocket) 
020 |a 9781118467398  |q (electronic bk.) 
020 |a 1118467396  |q (electronic bk.) 
020 |z 9781118025246  |q (pbk.) 
020 |z 1280591579 
020 |z 9781280591570 
020 |z 9780470683699 
020 |z 0470683694 
029 1 |a AU@  |b 000049595481 
029 1 |a AU@  |b 000052894400 
029 1 |a DEBBG  |b BV041906001 
029 1 |a DEBBG  |b BV042742359 
029 1 |a DEBSZ  |b 397238576 
029 1 |a LQU  |b 747015 
029 1 |a NZ1  |b 14675347 
029 1 |a NZ1  |b 15922025 
035 |a (OCoLC)773371813  |z (OCoLC)776108264  |z (OCoLC)780371027  |z (OCoLC)796002055  |z (OCoLC)817082297  |z (OCoLC)880748609 
037 |a 10.1002/9781118467398  |b Wiley InterScience  |n http://www3.interscience.wiley.com 
037 |a 7CFCF1B2-85B6-41D9-8C23-21785EA0B77E  |b OverDrive, Inc.  |n http://www.overdrive.com 
042 |a pcc 
050 0 0 |a HG6024.A3 
072 7 |a BUS  |x 036000  |2 bisacsh 
082 0 0 |a 332.64/57015195  |2 23 
084 |a BUS027000  |2 bisacsh 
049 |a MAIN 
100 1 |a Cerrato, Mario. 
245 1 4 |a The mathematics of derivatives securities with applications in MATLAB /  |c Mario Cerrato. 
264 1 |a Hoboken :  |b John Wiley & Sons Inc.,  |c 2012. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a The Wiley Finance Series ;  |v v. 646 
520 |a "The book is divided into two parts - the first part introduces probability theory, stochastic calculus and stochastic processes before moving on to the second part which instructs readers on how to apply the content learnt in part one to solve complex financial problems such as pricing and hedging exotic options, pricing American derivatives, pricing and hedging under stochastic volatility, and interest rate modelling. Each chapter provides a thorough discussion of the topics covered with practical examples in MATLAB so that readers will build up to an analysis of modern cutting edge research in finance, combining probabilistic models and cutting edge finance illustrated by MATLAB applications. Most books currently available on the subject require the reader to have some knowledge of the subject area and rarely consider computational applications such as MATLAB. This book stands apart from the rest as it covers complex analytical issues and complex financial instruments in a way that is accessible to those without a background in probability theory and finance, as well as providing detailed mathematical explanations with MATLAB code for a variety of topics and real world case examples"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
500 |a Machine generated contents note: Chapter 1 Introduction. Overview of MatLab. Using various MatLab's toolboxes. Mathematics with MatLab. Statistics with MatLab. Programming in MatLab. Part 1. Chapter 2 Probability Theory. Set and sample space. Sigma algebra, probability measure and probability space. Discrete and continuous random variables. Measurable mapping. Joint, conditional and marginal distributions. Expected values and moment of a distribution. Appendix 1: Bernoulli law of large numbers. Appendix 2: Conditional expectations. Appendix 3: Hilbert spaces. Chapter 3 Stochastic Processes. Martingales processes. Stopping times. The optional stopping theorem. Local martingales and semi-martingales. Brownian motions. Brownian motions and reflection principle. Martingales separation theorem of Brownian motions. Appendix 1: Working with Brownian motions. Chapter 4 Ito Calculus and Ito Integral. Quadratic variation of Brownian motions. The construction of Ito integral with elementary process. The general Ito integral. Construction of the Ito integral with respect to semi-martingales integrators. Quadratic variation and general bounded martingales. Ito lemma and Ito formula. Appendix 1: Ito Integral and Riemann-Stieljes integral. Part 2. Chapter 5 The Black and Scholes Economy and Black and Scholes Formula. The fundamental theorem of asset pricing. Martingales measures. The Girsanov Theorem. The Randon-Nikodym. The Black and Scholes Model. The Black and Scholes formula. The Black and Scholes in practice. The Feyman-Kac formula. Appendix 1: The Kolmogorov Backword equation. Appendix 2: Change of numeraire. Chapter 6 Monte Carlo Methods for Options Pricing. Basic concepts and pricing European style options. Variance reduction techniques. Pricing path dependent options. Projections methods in finance. Estimations of Greeks by Monte Carlo methods. Chapter 7 American Option Pricing. A review of the literature on pricing American put options. Optimal stopping times and American put options. A dynamic programming approach to price American options. The Losgstaff and Schwartz (2001) approach. The Glasserman and Yu (2004) approach. Estimation of the upper bound. Cerrato (2008) approach to compute upper bounds. Chapter 8 Exotic Options. Digital and binary. Asian options. Forward start options. Barrier options. Hedging barrier options. Chapter 9 Stochastic Volatility Models. Square root diffusion models. The Heston Model. Processes with jumps. Monte Carlo methods to price derivatives under stochastic volatility. Euler methods and stochastic differential equations. Exact simulation of Greeks under stochastic volatility. Computing Greeks for exotics using simulations. Chapter 10 Interest Rate Modeling. A general framework. Affine models. The Vasicek model. The Cox, Ingersoll & Ross Model. The Hull and White (HW) Model. Bond options. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a The Mathematics of Derivatives Securities with Applications in MATLAB; Contents; Preface; 1 An Introduction to Probability Theory; 1.1 The Notion of a Set and a Sample Space; 1.2 Sigma Algebras or Field; 1.3 Probability Measure and Probability Space; 1.4 Measurable Mapping; 1.5 Cumulative Distribution Functions; 1.6 Convergence in Distribution; 1.7 Random Variables; 1.8 Discrete Random Variables; 1.9 Example of Discrete Random Variables: The Binomial Distribution; 1.10 Hypergeometric Distribution; 1.11 Poisson Distribution; 1.12 Continuous Random Variables; 1.13 Uniform Distribution. 
630 0 0 |a MATLAB. 
650 0 |a Derivative securities  |x Statistical methods. 
650 0 |a Finance  |x Statistical methods. 
650 0 |a Probabilities. 
650 4 |a Derivative securities  |x Statistical methods. 
650 4 |a Finance  |x Statistical methods. 
650 4 |a MATLAB. 
650 4 |a Probabilities. 
650 7 |a BUSINESS & ECONOMICS  |x Finance.  |2 bisacsh 
655 4 |a Electronic books. 
655 7 |a Electronic books.  |2 local 
776 0 8 |i Print version:  |a Cerrato, Mario.  |t Mathematics of derivatives securities with applications in MATLAB.  |b Third edition.  |d Hoboken : John Wiley & Sons Inc., 2012  |z 9781118025246  |w (DLC) 2012000873 
830 0 |a Wiley finance series. 
856 4 0 |u https://doi.org/10.1002/9781118467398  |z Full Text via HEAL-Link 
994 |a 92  |b DG1