Principles of turbomachinery /

"This text provides students and professionals at all levels with a highly accessible reference. The coverage allows for a smooth transition from the study of thermodynamics, fluid dynamics, and heat transfer to the subject of turbomachinery, with chapters organized so that more difficult mater...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Korpela, S. A.
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, N.J. : Wiley, [2011]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Principles of Turbomachinery; CONTENTS; Foreword; Acknowledgments; 1 Introduction; 1.1 Energy and fluid machines; 1.1.1 Energy conversion of fossil fuels; 1.1.2 Steam turbines; 1.1.3 Gas turbines; 1.1.4 Hydraulic turbines; 1.1.5 Wind turbines; 1.1.6 Compressors; 1.1.7 Pumps and blowers; 1.1.8 Other uses and issues; 1.2 Historical survey; 1.2.1 Water power; 1.2.2 Wind turbines; 1.2.3 Steam turbines; 1.2.4 Jet propulsion; 1.2.5 Industrial turbines; 1.2.6 Note on units; 2 Principles of Thermodynamics and Fluid Flow; 2.1 Mass conservation principle; 2.2 First law of thermodynamics.
  • 2.3 Second law of thermodynamics2.3.1 Tds equations; 2.4 Equations of state; 2.4.1 Properties of steam; 2.4.2 Ideal gases; 2.4.3 Air tables and isentropic relations; 2.4.4 Ideal gas mixtures; 2.4.5 Incompressibility; 2.4.6 Stagnation state; 2.5 Efficiency; 2.5.1 Efficiency measures; 2.5.2 Thermodynamic losses; 2.5.3 Incompressible fluid; 2.5.4 Compressible flows; 2.6 Momentum balance; Exercises; 3 Compressible Flow through Nozzles; 3.1 Mach number and the speed of sound; 3.1.1 Mach number relations; 3.2 Isentropic flow with area change; 3.2.1 Converging nozzle.
  • 3.2.2 Converging-diverging nozzle3.3 Normal shocks; 3.3.1 Rankine-Hugoniot relations; 3.4 Influence of friction in flow through straight nozzles; 3.4.1 Polytropic efficiency; 3.4.2 Loss coefficients; 3.4.3 Nozzle efficiency; 3.4.4 Combined Fanno flow and area change; 3.5 Supersaturation; 3.6 Prandtl-Meyer expansion; 3.6.1 Mach waves; 3.6.2 Prandtl-Meyer theory; 3.7 Flow leaving a turbine nozzle; Exercises; 4 Principles of Turbomachine Analysis; 4.1 Velocity triangles; 4.2 Moment of momentum balance; 4.3 Energy transfer in turbomachines; 4.3.1 Trothalpy and specific work in terms of velocities.
  • 4.3.2 Degree of reaction4.4 Utilization; 4.5 Scaling and similitude; 4.5.1 Similitude; 4.5.2 Incompressible flow; 4.5.3 Shape parameter or specific speed; 4.5.4 Compressible flow analysis; 4.6 Performance characteristics; 4.6.1 Compressor performance map; 4.6.2 Turbine performance map; Exercises; 5 Steam Turbines; 5.1 Introduction; 5.2 Impulse turbines; 5.2.1 Single-stage impulse turbine; 5.2.2 Pressure compounding; 5.2.3 Blade shapes; 5.2.4 Velocity compounding; 5.3 Stage with zero reaction; 5.4 Loss coefficients; Exercises; 6 Axial Turbines; 6.1 Introduction; 6.2 Turbine stage analysis.
  • 6.3 Flow and loading coefficients and reaction ratio6.3.1 Fifty percent (50%) stage; 6.3.2 Zero percent (0%) reaction stage; 6.3.3 Off-design operation; 6.4 Three-dimensional flow; 6.5 Radial equilibrium; 6.5.1 Free vortex flow; 6.5.2 Fixed blade angle; 6.6 Constant mass flux; 6.7 Turbine efficiency and losses; 6.7.1 Soderberg loss coefficients; 6.7.2 Stage efficiency; 6.7.3 Stagnation pressure losses; 6.7.4 Performance charts; 6.7.5 Zweifel correlation; 6.7.6 Further discussion of losses; 6.7.7 Ainley-Mathieson correlation; 6.7.8 Secondary loss; 6.8 Multistage turbine.