Bayesian analysis of stochastic process models /

"This book provides analysis of stochastic processes from a Bayesian perspective with coverage of the main classes of stochastic processing, including modeling, computational, inference, prediction, decision-making and important applied models based on stochastic processes. In offers an introdu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ruggeri, Fabrizio
Άλλοι συγγραφείς: Wiper, Michael P., Ríos Insua, David, 1964-
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, New Jersey : Wiley, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06304nam a2200661 4500
001 ocn775099472
003 OCoLC
005 20170124070446.9
006 m o d
007 cr |||||||||||
008 120202s2012 nju ob 001 0 eng
010 |a  2012004782 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d N$T  |d DG1  |d CUS  |d OCLCF  |d MERUC  |d OCLCQ  |d DEBBG  |d GrThAP 
019 |a 793103956  |a 794822653 
020 |a 9780470975923  |q (Adobe PDF) 
020 |a 047097592X  |q (Adobe PDF) 
020 |a 9781118304037  |q (ePub) 
020 |a 1118304039  |q (ePub) 
020 |a 9781118304204  |q (MobiPocket) 
020 |a 1118304209  |q (MobiPocket) 
020 |a 9780470975916  |q (electronic bk.) 
020 |a 0470975911  |q (electronic bk.) 
020 |z 9780470744536  |q (hardback) 
029 1 |a AU@  |b 000048545199 
029 1 |a NZ1  |b 15351430 
029 1 |a DEBBG  |b BV043394076 
035 |a (OCoLC)775099472  |z (OCoLC)793103956  |z (OCoLC)794822653 
037 |a 10.1002/9780470975916  |b Wiley InterScience  |n http://www3.interscience.wiley.com 
042 |a pcc 
050 0 0 |a QA279.5 
072 7 |a MAT  |x 029010  |2 bisacsh 
082 0 0 |a 519.5/42  |2 23 
084 |a MAT029010  |2 bisacsh 
049 |a MAIN 
100 1 |a Ruggeri, Fabrizio. 
245 1 0 |a Bayesian analysis of stochastic process models /  |c Fabrizio Ruggeri, Michael P. Wiper, David Rios Insua. 
264 1 |a Hoboken, New Jersey :  |b Wiley,  |c 2012. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
520 |a "This book provides analysis of stochastic processes from a Bayesian perspective with coverage of the main classes of stochastic processing, including modeling, computational, inference, prediction, decision-making and important applied models based on stochastic processes. In offers an introduction of MCMC and other statistical computing machinery that have pushed forward advances in Bayesian methodology. Addressing the growing interest for Bayesian analysis of more complex models, based on stochastic processes, this book aims to unite scattered information into one comprehensive and reliable volume"--  |c Provided by publisher. 
520 |a "A unique book on Bayesian analyses of stochastic process based models"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
500 |a Machine generated contents note: Preface 1 Stochastic Processes 11 1.1 Introduction 11 1.2 Key Concepts in Stochastic Processes 11 1.3 Main Classes of Stochastic Processes 16 1.4 Inference, Prediction and Decision Making 21 1.5 Discussion 23 2 Bayesian Analysis 27 2.1 Introduction 27 2.2 Bayesian Statistics 28 2.3 Bayesian Decision Analysis 37 2.4 Bayesian Computation 39 2.5 Discussion 51 3 Discrete Time Markov Chains 61 3.1 Introduction 61 3.2 Important Markov Chain Models 62 3.3 Inference for First Order Chains 66 3.4 Special Topics 76 3.5 Case Study: Wind Directions at Gij́on 87 3.6 Markov Decision Processes 94 3.7 Discussion 97 4 Continuous Time Markov Chains and Extensions 105 4.1 Introduction 105 4.2 Basic Setup and Results 106 4.3 Inference and Prediction for CTMCs 108 4.4 Case Study: Hardware Availability through CTMCs 112 4.5 Semi-Markovian Processes 118 4.6 Decision Making with Semi-Markovian Decision Processes 122 4.7 Discussion 128 5 Poisson Processes and Extensions 133 5.1 Introduction 133 5.2 Basics on Poisson Processes 134 5.3 Homogeneous Poisson Processes 138 5.4 Nonhomogeneous Poisson Processes 147 5.5 Compound Poisson Processes 153 5.6 Further Extensions of Poisson Processes 154 5.7 Case Study: Earthquake Occurrences 157 5.8 Discussion 162 6 Continuous Time Continuous Space Processes 169 6.1 Introduction 169 6.2 Gaussian Processes 170 6.3 Brownian Motion and Fractional Brownian Motion 174 6.4 Dilusions 181 6.5 Case Study: Prey-predator Systems 184 6.6 Discussion 190 7 Queueing Analysis 201 7.1 Introduction 201 7.2 Basic Queueing Concepts 201 7.3 The Main Queueing Models 204 7.4 Inference for Queueing Systems 208 7.5 Inference for M=M=1 Systems 209 7.6 Inference for Non Markovian Systems 220 7.7 Decision Problems in Queueing Systems 229 7.8 Case Study: Optimal Number of Beds in a Hospital 230 7.9 Discussion 235 8 Reliability 245 8.1 Introduction 245 8.2 Basic Reliability Concepts 246 8.3 Renewal Processes 249 8.4 Poisson Processes 251 8.5 Other Processes 259 8.6 Maintenance 262 8.7 Case Study: Gas Escapes 263 8.8 Discussion 271 9 Discrete Event Simulation 279 9.1 Introduction 279 9.2 Discrete Event Simulation Methods 280 9.3 A Bayesian View of DES 283 9.4 Case Study: A G=G=1 Queueing System 286 9.5 Bayesian Output Analysis 288 9.6 Simulation and Optimization 292 9.7 Discussion 294 10 Risk Analysis 301 10.1 Introduction 301 10.2 Risk Measures 302 10.3 Ruin Problems 316 10.4 Case Study: Ruin Probability Estimation 320 10.5 Discussion 327 Appendix A Main Distributions 337 Appendix B Generating Functions and the Laplace-Stieltjes Transform 347 Index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a Front Matter -- Basic Concepts and Tools. Stochastic Processes -- Bayesian Analysis -- Models. Discrete Time Markov Chains and Extensions -- Continuous Time Markov Chains and Extensions -- Poisson Processes and Extensions -- Continuous Time Continuous Space Processes -- Applications. Queueing Analysis -- Reliability -- Discrete Event Simulation -- Risk Analysis -- Appendix A: Main Distributions -- Appendix B: Generating Functions and the Laplace₆Stieltjes Transform -- Index -- Wiley Series in Probability and Statistics. 
650 0 |a Bayesian statistical decision theory. 
650 0 |a Stochastic processes. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Bayesian Analysis.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory.  |2 fast  |0 (OCoLC)fst00829019 
650 7 |a Stochastic processes.  |2 fast  |0 (OCoLC)fst01133519 
655 4 |a Electronic books. 
700 1 |a Wiper, Michael P. 
700 1 |a Ríos Insua, David,  |d 1964- 
776 0 8 |i Print version:  |a Ruggeri, Fabrizio.  |t Bayesian analysis of stochastic process models.  |d Hoboken, New Jersey : Wiley, 2012  |z 9780470744536  |w (DLC) 2012000092 
856 4 0 |u https://doi.org/10.1002/9780470975916  |z Full Text via HEAL-Link 
994 |a 92  |b DG1